Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319001479> ?p ?o ?g. }
- W4319001479 endingPage "e13376" @default.
- W4319001479 startingPage "e13376" @default.
- W4319001479 abstract "One of the most critical concerns in power system reliability is the timely and accurate detection of transmission line faults. Therefore, accurate detection and localisation of these faults are necessary to avert system collapse. This paper focuses on using Artificial Neural Networks in faults detection and localisation to attain accuracy, precision and speed of execution. A 330 kV, 500 km three-phase transmission line was modelled to extract faulty current and voltage data from the line. The Artificial Neural Network technique was used to train this data, and an accuracy of 100% was attained for fault detection and about 99.5% for fault localisation at different distances with 0.0017 μs of detection and an average error of 0%–0.5%. This model performs better than Support Vector Machine and Principal Component Analysis with a higher fault detection time. This proposed model serves as the basis for transmission line fault protection and management system." @default.
- W4319001479 created "2023-02-03" @default.
- W4319001479 creator A5025757700 @default.
- W4319001479 creator A5063171116 @default.
- W4319001479 creator A5075375017 @default.
- W4319001479 date "2023-02-01" @default.
- W4319001479 modified "2023-10-18" @default.
- W4319001479 title "The use of artificial neural network for low latency of fault detection and localisation in transmission line" @default.
- W4319001479 cites W1969890787 @default.
- W4319001479 cites W1996145623 @default.
- W4319001479 cites W2002116680 @default.
- W4319001479 cites W2012222827 @default.
- W4319001479 cites W2018307545 @default.
- W4319001479 cites W2023067208 @default.
- W4319001479 cites W2034950900 @default.
- W4319001479 cites W2037460421 @default.
- W4319001479 cites W2062085513 @default.
- W4319001479 cites W2065039610 @default.
- W4319001479 cites W2088681963 @default.
- W4319001479 cites W2090956425 @default.
- W4319001479 cites W2096612305 @default.
- W4319001479 cites W2135997753 @default.
- W4319001479 cites W2142674421 @default.
- W4319001479 cites W2157896893 @default.
- W4319001479 cites W2161750299 @default.
- W4319001479 cites W2167463026 @default.
- W4319001479 cites W2293984916 @default.
- W4319001479 cites W2335429435 @default.
- W4319001479 cites W2337881469 @default.
- W4319001479 cites W2343847222 @default.
- W4319001479 cites W2510284787 @default.
- W4319001479 cites W2756270272 @default.
- W4319001479 cites W2954316022 @default.
- W4319001479 cites W2962692913 @default.
- W4319001479 cites W3008209890 @default.
- W4319001479 cites W3008640474 @default.
- W4319001479 cites W3097239744 @default.
- W4319001479 cites W3099489360 @default.
- W4319001479 cites W3128657946 @default.
- W4319001479 cites W3158996801 @default.
- W4319001479 cites W3200759122 @default.
- W4319001479 cites W4376848433 @default.
- W4319001479 doi "https://doi.org/10.1016/j.heliyon.2023.e13376" @default.
- W4319001479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36816249" @default.
- W4319001479 hasPublicationYear "2023" @default.
- W4319001479 type Work @default.
- W4319001479 citedByCount "2" @default.
- W4319001479 countsByYear W43190014792023 @default.
- W4319001479 crossrefType "journal-article" @default.
- W4319001479 hasAuthorship W4319001479A5025757700 @default.
- W4319001479 hasAuthorship W4319001479A5063171116 @default.
- W4319001479 hasAuthorship W4319001479A5075375017 @default.
- W4319001479 hasBestOaLocation W43190014791 @default.
- W4319001479 hasConcept C119599485 @default.
- W4319001479 hasConcept C121332964 @default.
- W4319001479 hasConcept C127313418 @default.
- W4319001479 hasConcept C127413603 @default.
- W4319001479 hasConcept C140311924 @default.
- W4319001479 hasConcept C152745839 @default.
- W4319001479 hasConcept C153180895 @default.
- W4319001479 hasConcept C154945302 @default.
- W4319001479 hasConcept C163258240 @default.
- W4319001479 hasConcept C165205528 @default.
- W4319001479 hasConcept C172707124 @default.
- W4319001479 hasConcept C175551986 @default.
- W4319001479 hasConcept C198352243 @default.
- W4319001479 hasConcept C21267803 @default.
- W4319001479 hasConcept C2524010 @default.
- W4319001479 hasConcept C27438332 @default.
- W4319001479 hasConcept C33441834 @default.
- W4319001479 hasConcept C33923547 @default.
- W4319001479 hasConcept C41008148 @default.
- W4319001479 hasConcept C43214815 @default.
- W4319001479 hasConcept C50644808 @default.
- W4319001479 hasConcept C62520636 @default.
- W4319001479 hasConcept C761482 @default.
- W4319001479 hasConcept C76155785 @default.
- W4319001479 hasConcept C79403827 @default.
- W4319001479 hasConceptScore W4319001479C119599485 @default.
- W4319001479 hasConceptScore W4319001479C121332964 @default.
- W4319001479 hasConceptScore W4319001479C127313418 @default.
- W4319001479 hasConceptScore W4319001479C127413603 @default.
- W4319001479 hasConceptScore W4319001479C140311924 @default.
- W4319001479 hasConceptScore W4319001479C152745839 @default.
- W4319001479 hasConceptScore W4319001479C153180895 @default.
- W4319001479 hasConceptScore W4319001479C154945302 @default.
- W4319001479 hasConceptScore W4319001479C163258240 @default.
- W4319001479 hasConceptScore W4319001479C165205528 @default.
- W4319001479 hasConceptScore W4319001479C172707124 @default.
- W4319001479 hasConceptScore W4319001479C175551986 @default.
- W4319001479 hasConceptScore W4319001479C198352243 @default.
- W4319001479 hasConceptScore W4319001479C21267803 @default.
- W4319001479 hasConceptScore W4319001479C2524010 @default.
- W4319001479 hasConceptScore W4319001479C27438332 @default.
- W4319001479 hasConceptScore W4319001479C33441834 @default.
- W4319001479 hasConceptScore W4319001479C33923547 @default.
- W4319001479 hasConceptScore W4319001479C41008148 @default.
- W4319001479 hasConceptScore W4319001479C43214815 @default.