Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319004954> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4319004954 endingPage "742" @default.
- W4319004954 startingPage "742" @default.
- W4319004954 abstract "Blockchain technology has gained immense momentum in the present era of information and digitalization and is likely to gain extreme popularity among the next generation, with diversified applications that spread far beyond cryptocurrencies and bitcoin. The application of blockchain technology is prominently observed in various spheres of social life, such as government administration, industries, healthcare, finance, and various other domains. In healthcare, the role of blockchain technology can be visualized in data-sharing, allowing users to choose specific data and control data access based on user type, which are extremely important for the maintenance of Electronic Health Records (EHRs). Machine learning and blockchain are two distinct technical fields: machine learning deals with data analysis and prediction, whereas blockchain emphasizes maintaining data security. The amalgamation of these two concepts can achieve prediction results from authentic datasets without compromising integrity. Such predictions have the additional advantage of enhanced trust in comparison to the application of machine learning algorithms alone. In this paper, we focused on data pertinent to diabetic retinopathy disease and its prediction. Diabetic retinopathy is a chronic disease caused by diabetes and leads to complete blindness. The disease requires early diagnosis to reduce the chances of vision loss. The dataset used is a publicly available dataset collected from the IEEE data port. The data were pre-processed using the median filtering technique and lesion segmentation was performed on the image data. These data were further subjected to the Taylor African Vulture Optimization (AVO) algorithm for hyper-parameter tuning, and then the most significant features were fed into the SqueezeNet classifier, which predicted the occurrence of diabetic retinopathy (DR) disease. The final output was saved in the blockchain architecture, which was accessed by the EHR manager, ensuring authorized access to the prediction results and related patient information. The results of the classifier were compared with those of earlier research, which demonstrated that the proposed model is superior to other models when measured by the following metrics: accuracy (94.2%), sensitivity (94.8%), and specificity (93.4%)." @default.
- W4319004954 created "2023-02-03" @default.
- W4319004954 creator A5055949183 @default.
- W4319004954 creator A5089469340 @default.
- W4319004954 date "2023-02-01" @default.
- W4319004954 modified "2023-10-01" @default.
- W4319004954 title "Diabetic Retinopathy Detection: A Blockchain and African Vulture Optimization Algorithm-Based Deep Learning Framework" @default.
- W4319004954 cites W2060968434 @default.
- W4319004954 cites W2828862258 @default.
- W4319004954 cites W2897961940 @default.
- W4319004954 cites W2900659066 @default.
- W4319004954 cites W2905290032 @default.
- W4319004954 cites W2907251489 @default.
- W4319004954 cites W2907743631 @default.
- W4319004954 cites W2929438235 @default.
- W4319004954 cites W2944778695 @default.
- W4319004954 cites W2964291324 @default.
- W4319004954 cites W2981164958 @default.
- W4319004954 cites W2998807005 @default.
- W4319004954 cites W3005147719 @default.
- W4319004954 cites W3011029607 @default.
- W4319004954 cites W3018026610 @default.
- W4319004954 cites W3084526633 @default.
- W4319004954 cites W3090750742 @default.
- W4319004954 cites W3113372935 @default.
- W4319004954 cites W3118438407 @default.
- W4319004954 cites W3138745367 @default.
- W4319004954 cites W3156579791 @default.
- W4319004954 cites W3163903840 @default.
- W4319004954 cites W3167290409 @default.
- W4319004954 cites W3171233080 @default.
- W4319004954 cites W3174384244 @default.
- W4319004954 cites W3176765353 @default.
- W4319004954 cites W3188064562 @default.
- W4319004954 cites W3199136933 @default.
- W4319004954 cites W3207619483 @default.
- W4319004954 cites W4226244379 @default.
- W4319004954 cites W4229007738 @default.
- W4319004954 cites W4280498115 @default.
- W4319004954 cites W4283656268 @default.
- W4319004954 cites W4287890976 @default.
- W4319004954 cites W4309067298 @default.
- W4319004954 cites W4309845736 @default.
- W4319004954 doi "https://doi.org/10.3390/electronics12030742" @default.
- W4319004954 hasPublicationYear "2023" @default.
- W4319004954 type Work @default.
- W4319004954 citedByCount "5" @default.
- W4319004954 countsByYear W43190049542023 @default.
- W4319004954 crossrefType "journal-article" @default.
- W4319004954 hasAuthorship W4319004954A5055949183 @default.
- W4319004954 hasAuthorship W4319004954A5089469340 @default.
- W4319004954 hasBestOaLocation W43190049541 @default.
- W4319004954 hasConcept C108583219 @default.
- W4319004954 hasConcept C11413529 @default.
- W4319004954 hasConcept C119857082 @default.
- W4319004954 hasConcept C124101348 @default.
- W4319004954 hasConcept C134018914 @default.
- W4319004954 hasConcept C154945302 @default.
- W4319004954 hasConcept C2779687700 @default.
- W4319004954 hasConcept C2779829184 @default.
- W4319004954 hasConcept C38652104 @default.
- W4319004954 hasConcept C41008148 @default.
- W4319004954 hasConcept C555293320 @default.
- W4319004954 hasConcept C71924100 @default.
- W4319004954 hasConcept C75684735 @default.
- W4319004954 hasConceptScore W4319004954C108583219 @default.
- W4319004954 hasConceptScore W4319004954C11413529 @default.
- W4319004954 hasConceptScore W4319004954C119857082 @default.
- W4319004954 hasConceptScore W4319004954C124101348 @default.
- W4319004954 hasConceptScore W4319004954C134018914 @default.
- W4319004954 hasConceptScore W4319004954C154945302 @default.
- W4319004954 hasConceptScore W4319004954C2779687700 @default.
- W4319004954 hasConceptScore W4319004954C2779829184 @default.
- W4319004954 hasConceptScore W4319004954C38652104 @default.
- W4319004954 hasConceptScore W4319004954C41008148 @default.
- W4319004954 hasConceptScore W4319004954C555293320 @default.
- W4319004954 hasConceptScore W4319004954C71924100 @default.
- W4319004954 hasConceptScore W4319004954C75684735 @default.
- W4319004954 hasIssue "3" @default.
- W4319004954 hasLocation W43190049541 @default.
- W4319004954 hasLocation W43190049542 @default.
- W4319004954 hasOpenAccess W4319004954 @default.
- W4319004954 hasPrimaryLocation W43190049541 @default.
- W4319004954 hasRelatedWork W2795261237 @default.
- W4319004954 hasRelatedWork W3014300295 @default.
- W4319004954 hasRelatedWork W3164822677 @default.
- W4319004954 hasRelatedWork W4223943233 @default.
- W4319004954 hasRelatedWork W4225161397 @default.
- W4319004954 hasRelatedWork W4312200629 @default.
- W4319004954 hasRelatedWork W4360585206 @default.
- W4319004954 hasRelatedWork W4364306694 @default.
- W4319004954 hasRelatedWork W4380075502 @default.
- W4319004954 hasRelatedWork W4380086463 @default.
- W4319004954 hasVolume "12" @default.
- W4319004954 isParatext "false" @default.
- W4319004954 isRetracted "false" @default.
- W4319004954 workType "article" @default.