Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319029690> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4319029690 abstract "Abstract Background Using XGBoost (XGB), this study demonstrates how flexible machine learning modelling can complement traditional statistical modelling (multinomial logistic regression) as a sensitivity analysis and predictive modelling tool in occupational health research. Design The study predicts welfare dependency for a cohort at 1, 3, and 5 years of follow-up using XGB and multinomial logistic regression (MLR). The models’ predictive ability is evaluated using tenfold cross-validation (internal validation) and geographical validation (semi-external validation). In addition, we calculate and graphically assess Shapley additive explanation (SHAP) values from the XGB model to examine deviation from linearity assumptions, including interactions. The study population consists of all 20–54 years old on long-term sickness absence leave due to self-reported common mental disorders (CMD) between April 26, 2010, and September 2012 in 21 (of 98) Danish municipalities that participated in the Danish Return to Work program. The total sample of 19.664 observations is split geospatially into a development set ( n = 9.756) and a test set ( n = 9.908). Results There were no practical differences in the XGB and MLR models’ predictive ability. Industry, job skills, citizenship, unemployment insurance, gender, and period had limited importance in predicting welfare dependency in both models. On the other hand, welfare dependency history and reason for sickness absence were strong predictors. Graphical SHAP-analysis of the XGB model did not indicate substantial deviations from linearity assumptions implied by the multinomial regression model. Conclusion Flexible machine learning models like XGB can supplement traditional statistical methods like multinomial logistic regression in occupational health research by providing a benchmark for predictive performance and traditional statistical models' ability to capture important associations for a given set of predictors as well as potential violations of linearity. Trial registration ISRCTN43004323." @default.
- W4319029690 created "2023-02-03" @default.
- W4319029690 creator A5060096646 @default.
- W4319029690 date "2023-02-02" @default.
- W4319029690 modified "2023-10-14" @default.
- W4319029690 title "Exploring predictors of welfare dependency 1, 3, and 5 years after mental health-related absence in danish municipalities between 2010 and 2012 using flexible machine learning modelling" @default.
- W4319029690 cites W1513618424 @default.
- W4319029690 cites W1831050183 @default.
- W4319029690 cites W1965476815 @default.
- W4319029690 cites W1969597383 @default.
- W4319029690 cites W2075834013 @default.
- W4319029690 cites W2102420102 @default.
- W4319029690 cites W2109806589 @default.
- W4319029690 cites W2115709314 @default.
- W4319029690 cites W2118000104 @default.
- W4319029690 cites W2154467938 @default.
- W4319029690 cites W2297716127 @default.
- W4319029690 cites W2395813727 @default.
- W4319029690 cites W2498119267 @default.
- W4319029690 cites W2618596952 @default.
- W4319029690 cites W2623215430 @default.
- W4319029690 cites W2781122472 @default.
- W4319029690 cites W2801441706 @default.
- W4319029690 cites W2920064656 @default.
- W4319029690 cites W2943527491 @default.
- W4319029690 cites W3102476541 @default.
- W4319029690 cites W3119809428 @default.
- W4319029690 cites W3121452939 @default.
- W4319029690 cites W3123503748 @default.
- W4319029690 cites W3128944451 @default.
- W4319029690 cites W3136075083 @default.
- W4319029690 cites W3164508800 @default.
- W4319029690 cites W4223603618 @default.
- W4319029690 cites W429766147 @default.
- W4319029690 doi "https://doi.org/10.1186/s12889-023-15106-y" @default.
- W4319029690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36732716" @default.
- W4319029690 hasPublicationYear "2023" @default.
- W4319029690 type Work @default.
- W4319029690 citedByCount "0" @default.
- W4319029690 crossrefType "journal-article" @default.
- W4319029690 hasAuthorship W4319029690A5060096646 @default.
- W4319029690 hasBestOaLocation W43190296901 @default.
- W4319029690 hasConcept C100243477 @default.
- W4319029690 hasConcept C105795698 @default.
- W4319029690 hasConcept C117568660 @default.
- W4319029690 hasConcept C144024400 @default.
- W4319029690 hasConcept C149782125 @default.
- W4319029690 hasConcept C149923435 @default.
- W4319029690 hasConcept C151956035 @default.
- W4319029690 hasConcept C152877465 @default.
- W4319029690 hasConcept C162324750 @default.
- W4319029690 hasConcept C2908647359 @default.
- W4319029690 hasConcept C33923547 @default.
- W4319029690 hasConcept C34447519 @default.
- W4319029690 hasConcept C71924100 @default.
- W4319029690 hasConcept C99454951 @default.
- W4319029690 hasConceptScore W4319029690C100243477 @default.
- W4319029690 hasConceptScore W4319029690C105795698 @default.
- W4319029690 hasConceptScore W4319029690C117568660 @default.
- W4319029690 hasConceptScore W4319029690C144024400 @default.
- W4319029690 hasConceptScore W4319029690C149782125 @default.
- W4319029690 hasConceptScore W4319029690C149923435 @default.
- W4319029690 hasConceptScore W4319029690C151956035 @default.
- W4319029690 hasConceptScore W4319029690C152877465 @default.
- W4319029690 hasConceptScore W4319029690C162324750 @default.
- W4319029690 hasConceptScore W4319029690C2908647359 @default.
- W4319029690 hasConceptScore W4319029690C33923547 @default.
- W4319029690 hasConceptScore W4319029690C34447519 @default.
- W4319029690 hasConceptScore W4319029690C71924100 @default.
- W4319029690 hasConceptScore W4319029690C99454951 @default.
- W4319029690 hasFunder F4320323288 @default.
- W4319029690 hasIssue "1" @default.
- W4319029690 hasLocation W43190296901 @default.
- W4319029690 hasLocation W43190296902 @default.
- W4319029690 hasLocation W43190296903 @default.
- W4319029690 hasOpenAccess W4319029690 @default.
- W4319029690 hasPrimaryLocation W43190296901 @default.
- W4319029690 hasRelatedWork W129344463 @default.
- W4319029690 hasRelatedWork W1518680793 @default.
- W4319029690 hasRelatedWork W2146640661 @default.
- W4319029690 hasRelatedWork W2367214771 @default.
- W4319029690 hasRelatedWork W3183807417 @default.
- W4319029690 hasRelatedWork W4210831302 @default.
- W4319029690 hasRelatedWork W4223527116 @default.
- W4319029690 hasRelatedWork W4243079900 @default.
- W4319029690 hasRelatedWork W766138655 @default.
- W4319029690 hasRelatedWork W2739255552 @default.
- W4319029690 hasVolume "23" @default.
- W4319029690 isParatext "false" @default.
- W4319029690 isRetracted "false" @default.
- W4319029690 workType "article" @default.