Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319040344> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4319040344 endingPage "100" @default.
- W4319040344 startingPage "87" @default.
- W4319040344 abstract "Combining the benefits of an empirical mode decomposition (EMD), a convolutional neural network (CNN), and a long-short term memory (LSTM) neural network, this research proposes a hybrid model for forecasting short-term multistep ahead wind speed that can assist microgrids in achieving their low generation cost and carbon neutrality goals. Prior to EMD, historical wind speed time series were pre-processed, and then the resulting time series of wind speeds were decomposed into intrinsic mode functions (IMFs). Following that, a CNN-LSTM model that had been subjected to optimization was employed to carry out the training and subsequent evaluation (validation and implementation of the model). While CNN is able to directly extract the time series' intrinsic features, LSTM networks can fully leverage the data for improved prediction. In order to demonstrate the superiority of the proposed model, its results were compared to those of six other models (including hybrids and standalones), and the findings of the experiments provide empirical evidence that the hybrid EMD-CLSTM model proposed is superior. The strategy that has been proposed has also been utilized in industrial settings, where it has been found to be successful. The green energy management system (GEMS) of Leonics Co. Ltd. has incorporated the proposed model into their short-term decision-making and scheduling procedures in order to achieve their goals of a better energy mix, low-cost power generation, and carbon neutrality. Last but not least, the energy management system of the modified GEMS microgrid was upgraded to enable a greater penetration of wind energy sources without decreasing the microgrid's stability or reliability, making it possible for the system to eventually become carbon neutral." @default.
- W4319040344 created "2023-02-03" @default.
- W4319040344 creator A5066185695 @default.
- W4319040344 creator A5079127414 @default.
- W4319040344 creator A5090326615 @default.
- W4319040344 date "2023-04-01" @default.
- W4319040344 modified "2023-10-01" @default.
- W4319040344 title "Short term multi-steps wind speed forecasting for carbon neutral microgrid by decomposition based hybrid model" @default.
- W4319040344 cites W1163287539 @default.
- W4319040344 cites W1994170512 @default.
- W4319040344 cites W2007221293 @default.
- W4319040344 cites W2061272711 @default.
- W4319040344 cites W2062785237 @default.
- W4319040344 cites W2085467032 @default.
- W4319040344 cites W2228799413 @default.
- W4319040344 cites W2274744025 @default.
- W4319040344 cites W2314573598 @default.
- W4319040344 cites W2484979138 @default.
- W4319040344 cites W2562861021 @default.
- W4319040344 cites W2765945751 @default.
- W4319040344 cites W2767559196 @default.
- W4319040344 cites W2790397535 @default.
- W4319040344 cites W2884415573 @default.
- W4319040344 cites W2901258825 @default.
- W4319040344 cites W2939806510 @default.
- W4319040344 cites W3015428797 @default.
- W4319040344 cites W3019251610 @default.
- W4319040344 cites W3034887463 @default.
- W4319040344 cites W3096263775 @default.
- W4319040344 cites W3109972103 @default.
- W4319040344 cites W3214430374 @default.
- W4319040344 cites W4200254841 @default.
- W4319040344 cites W4212950276 @default.
- W4319040344 cites W4220887363 @default.
- W4319040344 cites W4283698113 @default.
- W4319040344 cites W4288056557 @default.
- W4319040344 cites W4292663501 @default.
- W4319040344 doi "https://doi.org/10.1016/j.esd.2023.01.016" @default.
- W4319040344 hasPublicationYear "2023" @default.
- W4319040344 type Work @default.
- W4319040344 citedByCount "4" @default.
- W4319040344 countsByYear W43190403442023 @default.
- W4319040344 crossrefType "journal-article" @default.
- W4319040344 hasAuthorship W4319040344A5066185695 @default.
- W4319040344 hasAuthorship W4319040344A5079127414 @default.
- W4319040344 hasAuthorship W4319040344A5090326615 @default.
- W4319040344 hasConcept C106131492 @default.
- W4319040344 hasConcept C119599485 @default.
- W4319040344 hasConcept C121332964 @default.
- W4319040344 hasConcept C127413603 @default.
- W4319040344 hasConcept C153083717 @default.
- W4319040344 hasConcept C153294291 @default.
- W4319040344 hasConcept C154945302 @default.
- W4319040344 hasConcept C161067210 @default.
- W4319040344 hasConcept C25570617 @default.
- W4319040344 hasConcept C2775924081 @default.
- W4319040344 hasConcept C2776784348 @default.
- W4319040344 hasConcept C2780150128 @default.
- W4319040344 hasConcept C31972630 @default.
- W4319040344 hasConcept C41008148 @default.
- W4319040344 hasConcept C50644808 @default.
- W4319040344 hasConcept C78600449 @default.
- W4319040344 hasConceptScore W4319040344C106131492 @default.
- W4319040344 hasConceptScore W4319040344C119599485 @default.
- W4319040344 hasConceptScore W4319040344C121332964 @default.
- W4319040344 hasConceptScore W4319040344C127413603 @default.
- W4319040344 hasConceptScore W4319040344C153083717 @default.
- W4319040344 hasConceptScore W4319040344C153294291 @default.
- W4319040344 hasConceptScore W4319040344C154945302 @default.
- W4319040344 hasConceptScore W4319040344C161067210 @default.
- W4319040344 hasConceptScore W4319040344C25570617 @default.
- W4319040344 hasConceptScore W4319040344C2775924081 @default.
- W4319040344 hasConceptScore W4319040344C2776784348 @default.
- W4319040344 hasConceptScore W4319040344C2780150128 @default.
- W4319040344 hasConceptScore W4319040344C31972630 @default.
- W4319040344 hasConceptScore W4319040344C41008148 @default.
- W4319040344 hasConceptScore W4319040344C50644808 @default.
- W4319040344 hasConceptScore W4319040344C78600449 @default.
- W4319040344 hasLocation W43190403441 @default.
- W4319040344 hasOpenAccess W4319040344 @default.
- W4319040344 hasPrimaryLocation W43190403441 @default.
- W4319040344 hasRelatedWork W1991404302 @default.
- W4319040344 hasRelatedWork W2053067460 @default.
- W4319040344 hasRelatedWork W2517837300 @default.
- W4319040344 hasRelatedWork W2527813169 @default.
- W4319040344 hasRelatedWork W2786491554 @default.
- W4319040344 hasRelatedWork W2786564643 @default.
- W4319040344 hasRelatedWork W3103649829 @default.
- W4319040344 hasRelatedWork W3124658075 @default.
- W4319040344 hasRelatedWork W3158891845 @default.
- W4319040344 hasRelatedWork W4311672276 @default.
- W4319040344 hasVolume "73" @default.
- W4319040344 isParatext "false" @default.
- W4319040344 isRetracted "false" @default.
- W4319040344 workType "article" @default.