Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319040739> ?p ?o ?g. }
- W4319040739 endingPage "153" @default.
- W4319040739 startingPage "137" @default.
- W4319040739 abstract "Abstract Deep‐Learning‐based Fault Localisation (DLFL) leverages deep neural networks to learn the relationship between statement behaviour and program failures, showing promising results. However, since DLFL uses program failures as labels to conduct supervised learning, a labelled dataset is a requisite of applying DLFL. A failure is detected by comparing program output with a test oracle which is the standard answer for the given input. The problem is, test oracles are often difficult, or even impossible to acquire in real life, and that has severely restricted the application of DLFL since we have only unlabelled datasets in most cases. Thus, MetaFL: Metamorphic Fault Localisation Using Weakly Supervised Deep Learning is proposed, to provide a weakly supervised learning solution for DLFL. Instead of using test oracles, MetaFL uses metamorphic relations to prescribe expected behaviour of a program, and defines labels of metamorphic testing groups by verifying integrity in each group of test cases. Hence, a coarse‐grained labelled dataset can be built from the originally unlabelled one, with which DLFL can work now, utilising a weakly supervised learning paradigm. The experiments show that MetaFL yields a performance comparable to plain DLFL under ideal condition (i.e. the labels of datasets are available). MetaFL successfully extends the methodology of DLFL from supervised learning to weakly supervised learning, and a fully labelled dataset is no longer mandatory for applying DLFL." @default.
- W4319040739 created "2023-02-03" @default.
- W4319040739 creator A5004699537 @default.
- W4319040739 creator A5010251502 @default.
- W4319040739 creator A5027936385 @default.
- W4319040739 creator A5051664828 @default.
- W4319040739 creator A5051763151 @default.
- W4319040739 creator A5070783668 @default.
- W4319040739 date "2023-02-01" @default.
- W4319040739 modified "2023-09-26" @default.
- W4319040739 title "MetaFL: Metamorphic fault localisation using weakly supervised deep learning" @default.
- W4319040739 cites W1550050122 @default.
- W4319040739 cites W1950030762 @default.
- W4319040739 cites W1972870230 @default.
- W4319040739 cites W1980015727 @default.
- W4319040739 cites W2004543041 @default.
- W4319040739 cites W2004727615 @default.
- W4319040739 cites W2010833880 @default.
- W4319040739 cites W2018430492 @default.
- W4319040739 cites W2023544474 @default.
- W4319040739 cites W2034653530 @default.
- W4319040739 cites W2041650849 @default.
- W4319040739 cites W2058547057 @default.
- W4319040739 cites W2067436653 @default.
- W4319040739 cites W2070581427 @default.
- W4319040739 cites W2092742242 @default.
- W4319040739 cites W2096902973 @default.
- W4319040739 cites W2097110854 @default.
- W4319040739 cites W2097862362 @default.
- W4319040739 cites W2112265708 @default.
- W4319040739 cites W2127841229 @default.
- W4319040739 cites W2138428785 @default.
- W4319040739 cites W2153145795 @default.
- W4319040739 cites W2156300645 @default.
- W4319040739 cites W2158303854 @default.
- W4319040739 cites W2159949130 @default.
- W4319040739 cites W2164456209 @default.
- W4319040739 cites W2324595780 @default.
- W4319040739 cites W2342081626 @default.
- W4319040739 cites W2343875716 @default.
- W4319040739 cites W2344949959 @default.
- W4319040739 cites W2360967250 @default.
- W4319040739 cites W2735706718 @default.
- W4319040739 cites W2746791238 @default.
- W4319040739 cites W2762500000 @default.
- W4319040739 cites W2771289545 @default.
- W4319040739 cites W2782311202 @default.
- W4319040739 cites W2795260929 @default.
- W4319040739 cites W2883497504 @default.
- W4319040739 cites W2888466188 @default.
- W4319040739 cites W2898868990 @default.
- W4319040739 cites W2919115771 @default.
- W4319040739 cites W2921022558 @default.
- W4319040739 cites W2941326118 @default.
- W4319040739 cites W2958754741 @default.
- W4319040739 cites W3013098030 @default.
- W4319040739 cites W3082163020 @default.
- W4319040739 cites W3098598077 @default.
- W4319040739 cites W3103674517 @default.
- W4319040739 cites W3119824729 @default.
- W4319040739 cites W3125046082 @default.
- W4319040739 cites W3142064846 @default.
- W4319040739 cites W4236410910 @default.
- W4319040739 cites W4251988601 @default.
- W4319040739 doi "https://doi.org/10.1049/sfw2.12102" @default.
- W4319040739 hasPublicationYear "2023" @default.
- W4319040739 type Work @default.
- W4319040739 citedByCount "0" @default.
- W4319040739 crossrefType "journal-article" @default.
- W4319040739 hasAuthorship W4319040739A5004699537 @default.
- W4319040739 hasAuthorship W4319040739A5010251502 @default.
- W4319040739 hasAuthorship W4319040739A5027936385 @default.
- W4319040739 hasAuthorship W4319040739A5051664828 @default.
- W4319040739 hasAuthorship W4319040739A5051763151 @default.
- W4319040739 hasAuthorship W4319040739A5070783668 @default.
- W4319040739 hasBestOaLocation W43190407391 @default.
- W4319040739 hasConcept C108583219 @default.
- W4319040739 hasConcept C119857082 @default.
- W4319040739 hasConcept C127313418 @default.
- W4319040739 hasConcept C136389625 @default.
- W4319040739 hasConcept C154945302 @default.
- W4319040739 hasConcept C165205528 @default.
- W4319040739 hasConcept C175551986 @default.
- W4319040739 hasConcept C199360897 @default.
- W4319040739 hasConcept C2984842247 @default.
- W4319040739 hasConcept C41008148 @default.
- W4319040739 hasConcept C50644808 @default.
- W4319040739 hasConcept C55166926 @default.
- W4319040739 hasConcept C58973888 @default.
- W4319040739 hasConceptScore W4319040739C108583219 @default.
- W4319040739 hasConceptScore W4319040739C119857082 @default.
- W4319040739 hasConceptScore W4319040739C127313418 @default.
- W4319040739 hasConceptScore W4319040739C136389625 @default.
- W4319040739 hasConceptScore W4319040739C154945302 @default.
- W4319040739 hasConceptScore W4319040739C165205528 @default.
- W4319040739 hasConceptScore W4319040739C175551986 @default.
- W4319040739 hasConceptScore W4319040739C199360897 @default.
- W4319040739 hasConceptScore W4319040739C2984842247 @default.