Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319049324> ?p ?o ?g. }
- W4319049324 abstract "Single-cell RNA sequencing (scRNA-seq) data are typically with a large number of missing values, which often results in the loss of critical gene signaling information and seriously limit the downstream analysis. Deep learning-based imputation methods often can better handle scRNA-seq data than shallow ones, but most of them do not consider the inherent relations between genes, and the expression of a gene is often regulated by other genes. Therefore, it is essential to impute scRNA-seq data by considering the regional gene-to-gene relations. We propose a novel model (named scGGAN) to impute scRNA-seq data that learns the gene-to-gene relations by Graph Convolutional Networks (GCN) and global scRNA-seq data distribution by Generative Adversarial Networks (GAN). scGGAN first leverages single-cell and bulk genomics data to explore inherent relations between genes and builds a more compact gene relation network to jointly capture the homogeneous and heterogeneous information. Then, it constructs a GCN-based GAN model to integrate the scRNA-seq, gene sequencing data and gene relation network for generating scRNA-seq data, and trains the model through adversarial learning. Finally, it utilizes data generated by the trained GCN-based GAN model to impute scRNA-seq data. Experiments on simulated and real scRNA-seq datasets show that scGGAN can effectively identify dropout events, recover the biologically meaningful expressions, determine subcellular states and types, improve the differential expression analysis and temporal dynamics analysis. Ablation experiments confirm that both the gene relation network and gene sequence data help the imputation of scRNA-seq data." @default.
- W4319049324 created "2023-02-04" @default.
- W4319049324 creator A5022746945 @default.
- W4319049324 creator A5027082940 @default.
- W4319049324 creator A5042241049 @default.
- W4319049324 creator A5086100690 @default.
- W4319049324 creator A5091618959 @default.
- W4319049324 date "2023-02-02" @default.
- W4319049324 modified "2023-10-11" @default.
- W4319049324 title "scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network" @default.
- W4319049324 cites W1552434751 @default.
- W4319049324 cites W1967327758 @default.
- W4319049324 cites W1982267716 @default.
- W4319049324 cites W2030017878 @default.
- W4319049324 cites W2047453261 @default.
- W4319049324 cites W2107680358 @default.
- W4319049324 cites W2135937351 @default.
- W4319049324 cites W2146512944 @default.
- W4319049324 cites W2511896561 @default.
- W4319049324 cites W2747877289 @default.
- W4319049324 cites W2757764553 @default.
- W4319049324 cites W2793350103 @default.
- W4319049324 cites W2805619986 @default.
- W4319049324 cites W2885999695 @default.
- W4319049324 cites W2889326414 @default.
- W4319049324 cites W2892055372 @default.
- W4319049324 cites W2943501111 @default.
- W4319049324 cites W2948469692 @default.
- W4319049324 cites W2949067670 @default.
- W4319049324 cites W2949237386 @default.
- W4319049324 cites W2949960840 @default.
- W4319049324 cites W2950983802 @default.
- W4319049324 cites W2951217100 @default.
- W4319049324 cites W2951381561 @default.
- W4319049324 cites W2951506174 @default.
- W4319049324 cites W2964507182 @default.
- W4319049324 cites W2990145226 @default.
- W4319049324 cites W3000350302 @default.
- W4319049324 cites W3003185417 @default.
- W4319049324 cites W3007573310 @default.
- W4319049324 cites W3037216933 @default.
- W4319049324 cites W3127238141 @default.
- W4319049324 cites W3134111171 @default.
- W4319049324 cites W3146944767 @default.
- W4319049324 cites W3147234347 @default.
- W4319049324 cites W3215470628 @default.
- W4319049324 cites W4205281625 @default.
- W4319049324 cites W4205464551 @default.
- W4319049324 cites W4205559708 @default.
- W4319049324 doi "https://doi.org/10.1093/bib/bbad040" @default.
- W4319049324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36733262" @default.
- W4319049324 hasPublicationYear "2023" @default.
- W4319049324 type Work @default.
- W4319049324 citedByCount "2" @default.
- W4319049324 countsByYear W43190493242023 @default.
- W4319049324 crossrefType "journal-article" @default.
- W4319049324 hasAuthorship W4319049324A5022746945 @default.
- W4319049324 hasAuthorship W4319049324A5027082940 @default.
- W4319049324 hasAuthorship W4319049324A5042241049 @default.
- W4319049324 hasAuthorship W4319049324A5086100690 @default.
- W4319049324 hasAuthorship W4319049324A5091618959 @default.
- W4319049324 hasConcept C104317684 @default.
- W4319049324 hasConcept C107397762 @default.
- W4319049324 hasConcept C108583219 @default.
- W4319049324 hasConcept C119857082 @default.
- W4319049324 hasConcept C124101348 @default.
- W4319049324 hasConcept C132525143 @default.
- W4319049324 hasConcept C150194340 @default.
- W4319049324 hasConcept C154945302 @default.
- W4319049324 hasConcept C162317418 @default.
- W4319049324 hasConcept C167966045 @default.
- W4319049324 hasConcept C25343380 @default.
- W4319049324 hasConcept C2988773926 @default.
- W4319049324 hasConcept C39890363 @default.
- W4319049324 hasConcept C41008148 @default.
- W4319049324 hasConcept C54355233 @default.
- W4319049324 hasConcept C58041806 @default.
- W4319049324 hasConcept C67339327 @default.
- W4319049324 hasConcept C80444323 @default.
- W4319049324 hasConcept C86803240 @default.
- W4319049324 hasConcept C9357733 @default.
- W4319049324 hasConceptScore W4319049324C104317684 @default.
- W4319049324 hasConceptScore W4319049324C107397762 @default.
- W4319049324 hasConceptScore W4319049324C108583219 @default.
- W4319049324 hasConceptScore W4319049324C119857082 @default.
- W4319049324 hasConceptScore W4319049324C124101348 @default.
- W4319049324 hasConceptScore W4319049324C132525143 @default.
- W4319049324 hasConceptScore W4319049324C150194340 @default.
- W4319049324 hasConceptScore W4319049324C154945302 @default.
- W4319049324 hasConceptScore W4319049324C162317418 @default.
- W4319049324 hasConceptScore W4319049324C167966045 @default.
- W4319049324 hasConceptScore W4319049324C25343380 @default.
- W4319049324 hasConceptScore W4319049324C2988773926 @default.
- W4319049324 hasConceptScore W4319049324C39890363 @default.
- W4319049324 hasConceptScore W4319049324C41008148 @default.
- W4319049324 hasConceptScore W4319049324C54355233 @default.
- W4319049324 hasConceptScore W4319049324C58041806 @default.
- W4319049324 hasConceptScore W4319049324C67339327 @default.
- W4319049324 hasConceptScore W4319049324C80444323 @default.
- W4319049324 hasConceptScore W4319049324C86803240 @default.