Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319066269> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4319066269 abstract "Objective Diabetes Mellitus is a serious disease where the body of affected patients are failed to produce enough insulin that causes an abnormality of blood sugar. This disease happens for a number of reasons including modern lifestyle, lethargic attitude, unhealthy food consumption, family history, age, overweight, etc. The aim of this study is to propose a machine learning based prediction model that detects diabetes at the beginning. Methods In this work, we collected 520 patients records from the University of California, Irvine (UCI) machine learning repository of Sylhet Diabetes Hospital, Sylhet. Then, a similar questionnaire of that hospital was followed and assembled 558 patients records from all over Bangladesh through this questionnaire. However, we accumulated patient records of these two datasets. In the next step, these datasets were cleaned and applied thirty five state-of-arts classifiers such as logistic regression (LR), K nearest neighbors (KNN), support vector classifier (SVC), Nave Byes (NB), decision tree (DT), random forest (RF), stochastic gradient descent (SGD), Perceptron, AdaBoost, XGBoost, passive aggressive classifier (PAC), ridge classifier (RC), Nu-support vector classifier (Nu-SVC), linear support vector classifier (LSVC), calibrated classifier CV (CCCV), nearest centroid (NC), Gaussian process classifier (GPC), multinomial NB (MNB), Complement NB, Bernoulli NB (BNB), Categorical NB, Bagging, extra tree(ET), gradiant boosting classifier (GBC), Hist gradiant boosting classifier (HGBC), One Vs Rest Classifier (OVsRC), multi-layer perceptron (MLP), label propagation (LP), label spreading (LS), stacking, ridge classifier CV (RCCV), logistic regression CV (LRCV), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and light gradient boosting machine (LGBM) to explore best stable predictive model. The performance of the classifiers has been measured using five metrics such as accuracy, precision, recall, f1-score, and area under the receiver operating characteristic. Finally, these outcomes were interpreted using Shapley additive explanations methods and identified relevant features for happening diabetes. Results In this work, different classifiers were shown their performance where ET outperformed any other classifiers with 97.11% accuracy for the Sylhet Diabetes Hospital dataset (SDHD) and MLP shows the best accuracy (96.42%) for the collected dataset. Subsequently, HGBC and LGBM provide the highest 94.90% accuracy for the combined datasets individually. Conclusion However, it is observed that LGBM, stacking, HGBC, RF, ET, bagging, and GBC represent more stable results for each dataset." @default.
- W4319066269 created "2023-02-04" @default.
- W4319066269 creator A5034828056 @default.
- W4319066269 creator A5038929550 @default.
- W4319066269 creator A5058742577 @default.
- W4319066269 creator A5058805126 @default.
- W4319066269 creator A5062325861 @default.
- W4319066269 creator A5088663676 @default.
- W4319066269 date "2023-02-01" @default.
- W4319066269 modified "2023-09-26" @default.
- W4319066269 title "Clinically Adaptable Machine Learning Model To Identify Early Appreciable Features of Diabetes In Bangladesh" @default.
- W4319066269 cites W1678356000 @default.
- W4319066269 cites W2056132907 @default.
- W4319066269 cites W2129888542 @default.
- W4319066269 cites W2131414141 @default.
- W4319066269 cites W2798421489 @default.
- W4319066269 cites W2911964244 @default.
- W4319066269 cites W2932292895 @default.
- W4319066269 cites W2970557481 @default.
- W4319066269 cites W2994617588 @default.
- W4319066269 cites W2997606798 @default.
- W4319066269 cites W3006607088 @default.
- W4319066269 cites W3017382074 @default.
- W4319066269 cites W3020776760 @default.
- W4319066269 cites W3030628494 @default.
- W4319066269 cites W3038500672 @default.
- W4319066269 cites W3041139715 @default.
- W4319066269 cites W3043363778 @default.
- W4319066269 cites W3046639328 @default.
- W4319066269 cites W3084116491 @default.
- W4319066269 cites W3115324092 @default.
- W4319066269 cites W3119728403 @default.
- W4319066269 cites W3121216533 @default.
- W4319066269 cites W3122033107 @default.
- W4319066269 cites W3134537993 @default.
- W4319066269 cites W3135503315 @default.
- W4319066269 cites W3136964515 @default.
- W4319066269 cites W4206772687 @default.
- W4319066269 doi "https://doi.org/10.1016/j.imed.2023.01.003" @default.
- W4319066269 hasPublicationYear "2023" @default.
- W4319066269 type Work @default.
- W4319066269 citedByCount "1" @default.
- W4319066269 countsByYear W43190662692023 @default.
- W4319066269 crossrefType "journal-article" @default.
- W4319066269 hasAuthorship W4319066269A5034828056 @default.
- W4319066269 hasAuthorship W4319066269A5038929550 @default.
- W4319066269 hasAuthorship W4319066269A5058742577 @default.
- W4319066269 hasAuthorship W4319066269A5058805126 @default.
- W4319066269 hasAuthorship W4319066269A5062325861 @default.
- W4319066269 hasAuthorship W4319066269A5088663676 @default.
- W4319066269 hasBestOaLocation W43190662691 @default.
- W4319066269 hasConcept C119857082 @default.
- W4319066269 hasConcept C12267149 @default.
- W4319066269 hasConcept C141404830 @default.
- W4319066269 hasConcept C151956035 @default.
- W4319066269 hasConcept C153180895 @default.
- W4319066269 hasConcept C154945302 @default.
- W4319066269 hasConcept C169258074 @default.
- W4319066269 hasConcept C173102733 @default.
- W4319066269 hasConcept C33923547 @default.
- W4319066269 hasConcept C41008148 @default.
- W4319066269 hasConcept C52620605 @default.
- W4319066269 hasConcept C69738355 @default.
- W4319066269 hasConcept C84525736 @default.
- W4319066269 hasConcept C95623464 @default.
- W4319066269 hasConceptScore W4319066269C119857082 @default.
- W4319066269 hasConceptScore W4319066269C12267149 @default.
- W4319066269 hasConceptScore W4319066269C141404830 @default.
- W4319066269 hasConceptScore W4319066269C151956035 @default.
- W4319066269 hasConceptScore W4319066269C153180895 @default.
- W4319066269 hasConceptScore W4319066269C154945302 @default.
- W4319066269 hasConceptScore W4319066269C169258074 @default.
- W4319066269 hasConceptScore W4319066269C173102733 @default.
- W4319066269 hasConceptScore W4319066269C33923547 @default.
- W4319066269 hasConceptScore W4319066269C41008148 @default.
- W4319066269 hasConceptScore W4319066269C52620605 @default.
- W4319066269 hasConceptScore W4319066269C69738355 @default.
- W4319066269 hasConceptScore W4319066269C84525736 @default.
- W4319066269 hasConceptScore W4319066269C95623464 @default.
- W4319066269 hasLocation W43190662691 @default.
- W4319066269 hasOpenAccess W4319066269 @default.
- W4319066269 hasPrimaryLocation W43190662691 @default.
- W4319066269 hasRelatedWork W2101819884 @default.
- W4319066269 hasRelatedWork W2362981726 @default.
- W4319066269 hasRelatedWork W2438464946 @default.
- W4319066269 hasRelatedWork W3146991051 @default.
- W4319066269 hasRelatedWork W4283313480 @default.
- W4319066269 hasRelatedWork W4321636153 @default.
- W4319066269 hasRelatedWork W4322621009 @default.
- W4319066269 hasRelatedWork W4381414210 @default.
- W4319066269 hasRelatedWork W4383535405 @default.
- W4319066269 hasRelatedWork W4386072274 @default.
- W4319066269 isParatext "false" @default.
- W4319066269 isRetracted "false" @default.
- W4319066269 workType "article" @default.