Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319068032> ?p ?o ?g. }
- W4319068032 abstract "Herein, we introduce a novel methodology to generate urban morphometric parameters that takes advantage of deep neural networks and inverse modeling. We take the example of Chicago, USA, where the Urban Canopy Parameters (UCPs) available from the National Urban Database and Access Portal Tool (NUDAPT) are used as input to the Weather Research and Forecasting (WRF) model. Next, the WRF simulations are carried out with Local Climate Zones (LCZs) as part of the World Urban Data Analysis and Portal Tools (WUDAPT) approach. Lastly, a third novel simulation, Digital Synthetic City (DSC), was undertaken where urban morphometry was generated using deep neural networks and inverse modeling, following which UCPs are re-calculated for the LCZs. The three experiments (NUDAPT, WUDAPT, and DSC) were compared against Mesowest observation stations. The results suggest that the introduction of LCZs improves the overall model simulation of urban air temperature. The DSC simulations yielded equal to or better results than the WUDAPT simulation. Furthermore, the change in the UCPs led to a notable difference in the simulated temperature gradients and wind speed within the urban region and the local convergence/divergence zones. These results provide the first successful implementation of the digital urban visualization dataset within an NWP system. This development now can lead the way for a more scalable and widespread ability to perform more accurate urban meteorological modeling and forecasting, especially in developing cities. Additionally, city planners will be able to generate synthetic cities and study their actual impact on the environment." @default.
- W4319068032 created "2023-02-04" @default.
- W4319068032 creator A5015527129 @default.
- W4319068032 creator A5057927861 @default.
- W4319068032 creator A5060955461 @default.
- W4319068032 creator A5083215200 @default.
- W4319068032 creator A5090414723 @default.
- W4319068032 date "2023-02-03" @default.
- W4319068032 modified "2023-10-18" @default.
- W4319068032 title "Deep learning-based urban morphology for city-scale environmental modeling" @default.
- W4319068032 cites W1822828960 @default.
- W4319068032 cites W1966432232 @default.
- W4319068032 cites W1969218479 @default.
- W4319068032 cites W1989750313 @default.
- W4319068032 cites W1993064731 @default.
- W4319068032 cites W2001645910 @default.
- W4319068032 cites W2001799731 @default.
- W4319068032 cites W2023383261 @default.
- W4319068032 cites W2028529111 @default.
- W4319068032 cites W2030737358 @default.
- W4319068032 cites W2045260753 @default.
- W4319068032 cites W2052326455 @default.
- W4319068032 cites W2068484621 @default.
- W4319068032 cites W2069850258 @default.
- W4319068032 cites W2076520289 @default.
- W4319068032 cites W2083339292 @default.
- W4319068032 cites W2090592000 @default.
- W4319068032 cites W2102375208 @default.
- W4319068032 cites W2114365067 @default.
- W4319068032 cites W2132624723 @default.
- W4319068032 cites W2162070159 @default.
- W4319068032 cites W2179912439 @default.
- W4319068032 cites W2201240731 @default.
- W4319068032 cites W2296729900 @default.
- W4319068032 cites W2468432484 @default.
- W4319068032 cites W2469290786 @default.
- W4319068032 cites W2513909804 @default.
- W4319068032 cites W2569758175 @default.
- W4319068032 cites W2589068765 @default.
- W4319068032 cites W2737850569 @default.
- W4319068032 cites W2787896673 @default.
- W4319068032 cites W2791956878 @default.
- W4319068032 cites W2896102698 @default.
- W4319068032 cites W2906546996 @default.
- W4319068032 cites W2932164054 @default.
- W4319068032 cites W2944131347 @default.
- W4319068032 cites W2945338037 @default.
- W4319068032 cites W2970932649 @default.
- W4319068032 cites W3010692794 @default.
- W4319068032 cites W3043898202 @default.
- W4319068032 cites W3157345478 @default.
- W4319068032 cites W4220658052 @default.
- W4319068032 cites W4233138986 @default.
- W4319068032 cites W4245972137 @default.
- W4319068032 cites W98257089 @default.
- W4319068032 cites W2107357957 @default.
- W4319068032 doi "https://doi.org/10.1093/pnasnexus/pgad027" @default.
- W4319068032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36909824" @default.
- W4319068032 hasPublicationYear "2023" @default.
- W4319068032 type Work @default.
- W4319068032 citedByCount "2" @default.
- W4319068032 countsByYear W43190680322023 @default.
- W4319068032 crossrefType "journal-article" @default.
- W4319068032 hasAuthorship W4319068032A5015527129 @default.
- W4319068032 hasAuthorship W4319068032A5057927861 @default.
- W4319068032 hasAuthorship W4319068032A5060955461 @default.
- W4319068032 hasAuthorship W4319068032A5083215200 @default.
- W4319068032 hasAuthorship W4319068032A5090414723 @default.
- W4319068032 hasBestOaLocation W43190680321 @default.
- W4319068032 hasConcept C108583219 @default.
- W4319068032 hasConcept C127413603 @default.
- W4319068032 hasConcept C133204551 @default.
- W4319068032 hasConcept C147176958 @default.
- W4319068032 hasConcept C153294291 @default.
- W4319068032 hasConcept C154945302 @default.
- W4319068032 hasConcept C205649164 @default.
- W4319068032 hasConcept C2778755073 @default.
- W4319068032 hasConcept C2779090739 @default.
- W4319068032 hasConcept C36464697 @default.
- W4319068032 hasConcept C39432304 @default.
- W4319068032 hasConcept C41008148 @default.
- W4319068032 hasConcept C48044578 @default.
- W4319068032 hasConcept C49545453 @default.
- W4319068032 hasConcept C50644808 @default.
- W4319068032 hasConcept C54005896 @default.
- W4319068032 hasConcept C58640448 @default.
- W4319068032 hasConcept C77088390 @default.
- W4319068032 hasConceptScore W4319068032C108583219 @default.
- W4319068032 hasConceptScore W4319068032C127413603 @default.
- W4319068032 hasConceptScore W4319068032C133204551 @default.
- W4319068032 hasConceptScore W4319068032C147176958 @default.
- W4319068032 hasConceptScore W4319068032C153294291 @default.
- W4319068032 hasConceptScore W4319068032C154945302 @default.
- W4319068032 hasConceptScore W4319068032C205649164 @default.
- W4319068032 hasConceptScore W4319068032C2778755073 @default.
- W4319068032 hasConceptScore W4319068032C2779090739 @default.
- W4319068032 hasConceptScore W4319068032C36464697 @default.
- W4319068032 hasConceptScore W4319068032C39432304 @default.
- W4319068032 hasConceptScore W4319068032C41008148 @default.
- W4319068032 hasConceptScore W4319068032C48044578 @default.