Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319068842> ?p ?o ?g. }
- W4319068842 endingPage "4773" @default.
- W4319068842 startingPage "4763" @default.
- W4319068842 abstract "Distorted sensors could occur randomly and may lead to the breakdown of a sensor array system. We consider an array model within which a small number of sensors are distorted by unknown sensor gain and phase errors. With such an array model, the problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is formulated under the framework of low-rank and row-sparse decomposition. We derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem. The convergence property of the IRLS algorithm is analyzed by means of the monotonicity and boundedness of the objective function. Extensive simulations are conducted regarding parameter selection, convergence speed, computational complexity, and performances of DOA estimation as well as distorted sensor detection. Even though the IRLS algorithm is slightly worse than the alternating direction method of multipliers in detecting the distorted sensors, the results show that our approach outperforms several state-of-the-art techniques in terms of convergence speed, computational cost, and DOA estimation performance." @default.
- W4319068842 created "2023-02-04" @default.
- W4319068842 creator A5001328562 @default.
- W4319068842 creator A5041233690 @default.
- W4319068842 creator A5047602932 @default.
- W4319068842 creator A5082563150 @default.
- W4319068842 date "2023-08-01" @default.
- W4319068842 modified "2023-10-04" @default.
- W4319068842 title "Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection" @default.
- W4319068842 cites W178005215 @default.
- W4319068842 cites W1966440305 @default.
- W4319068842 cites W1987996612 @default.
- W4319068842 cites W1995168330 @default.
- W4319068842 cites W1997201895 @default.
- W4319068842 cites W2000355138 @default.
- W4319068842 cites W2006277118 @default.
- W4319068842 cites W2042291830 @default.
- W4319068842 cites W2042565723 @default.
- W4319068842 cites W2055713856 @default.
- W4319068842 cites W2085637236 @default.
- W4319068842 cites W2086267235 @default.
- W4319068842 cites W2096783889 @default.
- W4319068842 cites W2100556411 @default.
- W4319068842 cites W2103972604 @default.
- W4319068842 cites W2105108073 @default.
- W4319068842 cites W2106630032 @default.
- W4319068842 cites W2113638573 @default.
- W4319068842 cites W2119883478 @default.
- W4319068842 cites W2128131274 @default.
- W4319068842 cites W2140728947 @default.
- W4319068842 cites W2146709885 @default.
- W4319068842 cites W2148719472 @default.
- W4319068842 cites W2162654459 @default.
- W4319068842 cites W2267569616 @default.
- W4319068842 cites W2305569075 @default.
- W4319068842 cites W249947190 @default.
- W4319068842 cites W2618291259 @default.
- W4319068842 cites W2624767020 @default.
- W4319068842 cites W2625541168 @default.
- W4319068842 cites W2635605542 @default.
- W4319068842 cites W2753338871 @default.
- W4319068842 cites W2765905346 @default.
- W4319068842 cites W2768041052 @default.
- W4319068842 cites W2800991716 @default.
- W4319068842 cites W2885159437 @default.
- W4319068842 cites W2887843685 @default.
- W4319068842 cites W2941868087 @default.
- W4319068842 cites W2948261429 @default.
- W4319068842 cites W2951401720 @default.
- W4319068842 cites W2955965309 @default.
- W4319068842 cites W2962815424 @default.
- W4319068842 cites W2965256058 @default.
- W4319068842 cites W3105835503 @default.
- W4319068842 cites W3146645391 @default.
- W4319068842 cites W3161414612 @default.
- W4319068842 cites W4205561450 @default.
- W4319068842 cites W4292363360 @default.
- W4319068842 doi "https://doi.org/10.1109/taes.2023.3241886" @default.
- W4319068842 hasPublicationYear "2023" @default.
- W4319068842 type Work @default.
- W4319068842 citedByCount "0" @default.
- W4319068842 crossrefType "journal-article" @default.
- W4319068842 hasAuthorship W4319068842A5001328562 @default.
- W4319068842 hasAuthorship W4319068842A5041233690 @default.
- W4319068842 hasAuthorship W4319068842A5047602932 @default.
- W4319068842 hasAuthorship W4319068842A5082563150 @default.
- W4319068842 hasBestOaLocation W43190688422 @default.
- W4319068842 hasConcept C105795698 @default.
- W4319068842 hasConcept C11413529 @default.
- W4319068842 hasConcept C114614502 @default.
- W4319068842 hasConcept C119857082 @default.
- W4319068842 hasConcept C126255220 @default.
- W4319068842 hasConcept C134306372 @default.
- W4319068842 hasConcept C162324750 @default.
- W4319068842 hasConcept C164226766 @default.
- W4319068842 hasConcept C172051844 @default.
- W4319068842 hasConcept C179799912 @default.
- W4319068842 hasConcept C185429906 @default.
- W4319068842 hasConcept C21822782 @default.
- W4319068842 hasConcept C2777303404 @default.
- W4319068842 hasConcept C33923547 @default.
- W4319068842 hasConcept C41008148 @default.
- W4319068842 hasConcept C50522688 @default.
- W4319068842 hasConcept C66251956 @default.
- W4319068842 hasConcept C72169020 @default.
- W4319068842 hasConcept C76155785 @default.
- W4319068842 hasConcept C9936470 @default.
- W4319068842 hasConceptScore W4319068842C105795698 @default.
- W4319068842 hasConceptScore W4319068842C11413529 @default.
- W4319068842 hasConceptScore W4319068842C114614502 @default.
- W4319068842 hasConceptScore W4319068842C119857082 @default.
- W4319068842 hasConceptScore W4319068842C126255220 @default.
- W4319068842 hasConceptScore W4319068842C134306372 @default.
- W4319068842 hasConceptScore W4319068842C162324750 @default.
- W4319068842 hasConceptScore W4319068842C164226766 @default.
- W4319068842 hasConceptScore W4319068842C172051844 @default.
- W4319068842 hasConceptScore W4319068842C179799912 @default.
- W4319068842 hasConceptScore W4319068842C185429906 @default.