Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319069146> ?p ?o ?g. }
- W4319069146 endingPage "217" @default.
- W4319069146 startingPage "202" @default.
- W4319069146 abstract "Detection of anomalies among a large number of processes is a fundamental task that has been studied in multiple research areas, with diverse applications spanning from spectrum access to cyber-security. Anomalous events are characterized by deviations in data distributions, and thus can be inferred from noisy observations based on statistical methods. In some scenarios, one can often obtain noisy observations aggregated from a chosen subset of processes. Such hierarchical search can further minimize the sample complexity while retaining accuracy. An anomaly search strategy should thus be designed based on multiple requirements, such as maximizing the detection accuracy; efficiency, be efficient in terms of sample complexity; and be able to cope with statistical models that are known only up to some missing parameters (i.e., composite hypotheses). In this paper, we consider anomaly detection with observations taken from a chosen subset of processes that conforms to a predetermined tree structure with partially known statistical model. We propose Hierarchical Dynamic Search (HDS), a sequential search strategy that uses two variations of the Generalized Log Likelihood Ratio (GLLR) statistic, and can be used for detection of multiple anomalies. HDS is shown to be order-optimal in terms of the size of the search space, and asymptotically optimal in terms of detection accuracy. An explicit upper bound on the error probability is established for the finite sample regime. In addition to extensive experiments on synthetic datasets, experiments have been conducted on the DARPA intrusion detection dataset, showing that HDS is superior to existing methods." @default.
- W4319069146 created "2023-02-04" @default.
- W4319069146 creator A5012405763 @default.
- W4319069146 creator A5027652422 @default.
- W4319069146 creator A5066085947 @default.
- W4319069146 creator A5073446210 @default.
- W4319069146 creator A5077036467 @default.
- W4319069146 date "2023-01-01" @default.
- W4319069146 modified "2023-09-30" @default.
- W4319069146 title "Anomaly Search Over Discrete Composite Hypotheses in Hierarchical Statistical Models" @default.
- W4319069146 cites W1665738595 @default.
- W4319069146 cites W1960533640 @default.
- W4319069146 cites W1965225725 @default.
- W4319069146 cites W1970385173 @default.
- W4319069146 cites W1970837734 @default.
- W4319069146 cites W1978470213 @default.
- W4319069146 cites W1989562319 @default.
- W4319069146 cites W1990503235 @default.
- W4319069146 cites W1999012791 @default.
- W4319069146 cites W2000184709 @default.
- W4319069146 cites W2018319586 @default.
- W4319069146 cites W2019645207 @default.
- W4319069146 cites W2020191275 @default.
- W4319069146 cites W2053321475 @default.
- W4319069146 cites W2054294025 @default.
- W4319069146 cites W2070495730 @default.
- W4319069146 cites W2082167858 @default.
- W4319069146 cites W2084512860 @default.
- W4319069146 cites W2089024057 @default.
- W4319069146 cites W2094365833 @default.
- W4319069146 cites W2101643234 @default.
- W4319069146 cites W2104912596 @default.
- W4319069146 cites W2107939512 @default.
- W4319069146 cites W2111790732 @default.
- W4319069146 cites W2114375687 @default.
- W4319069146 cites W2129242823 @default.
- W4319069146 cites W2130055503 @default.
- W4319069146 cites W2153620960 @default.
- W4319069146 cites W2153919695 @default.
- W4319069146 cites W2163356902 @default.
- W4319069146 cites W2165558283 @default.
- W4319069146 cites W2498422553 @default.
- W4319069146 cites W2512254099 @default.
- W4319069146 cites W2533570933 @default.
- W4319069146 cites W2615799287 @default.
- W4319069146 cites W2743681928 @default.
- W4319069146 cites W2890642069 @default.
- W4319069146 cites W2945910721 @default.
- W4319069146 cites W2963044532 @default.
- W4319069146 cites W2963506507 @default.
- W4319069146 cites W2964046421 @default.
- W4319069146 cites W2970269396 @default.
- W4319069146 cites W2974976221 @default.
- W4319069146 cites W2975107048 @default.
- W4319069146 cites W2986276296 @default.
- W4319069146 cites W3019350576 @default.
- W4319069146 cites W3099542668 @default.
- W4319069146 cites W3103169419 @default.
- W4319069146 cites W3104273276 @default.
- W4319069146 cites W3110383331 @default.
- W4319069146 cites W3187243030 @default.
- W4319069146 cites W3195411792 @default.
- W4319069146 cites W4232896127 @default.
- W4319069146 cites W4285175639 @default.
- W4319069146 cites W4289655134 @default.
- W4319069146 cites W4289713194 @default.
- W4319069146 cites W4292334561 @default.
- W4319069146 cites W4312356142 @default.
- W4319069146 doi "https://doi.org/10.1109/tsp.2023.3242074" @default.
- W4319069146 hasPublicationYear "2023" @default.
- W4319069146 type Work @default.
- W4319069146 citedByCount "0" @default.
- W4319069146 crossrefType "journal-article" @default.
- W4319069146 hasAuthorship W4319069146A5012405763 @default.
- W4319069146 hasAuthorship W4319069146A5027652422 @default.
- W4319069146 hasAuthorship W4319069146A5066085947 @default.
- W4319069146 hasAuthorship W4319069146A5073446210 @default.
- W4319069146 hasAuthorship W4319069146A5077036467 @default.
- W4319069146 hasConcept C105795698 @default.
- W4319069146 hasConcept C11413529 @default.
- W4319069146 hasConcept C114289077 @default.
- W4319069146 hasConcept C124101348 @default.
- W4319069146 hasConcept C129848803 @default.
- W4319069146 hasConcept C134306372 @default.
- W4319069146 hasConcept C153180895 @default.
- W4319069146 hasConcept C154945302 @default.
- W4319069146 hasConcept C33923547 @default.
- W4319069146 hasConcept C35525427 @default.
- W4319069146 hasConcept C41008148 @default.
- W4319069146 hasConcept C739882 @default.
- W4319069146 hasConcept C77553402 @default.
- W4319069146 hasConcept C89128539 @default.
- W4319069146 hasConceptScore W4319069146C105795698 @default.
- W4319069146 hasConceptScore W4319069146C11413529 @default.
- W4319069146 hasConceptScore W4319069146C114289077 @default.
- W4319069146 hasConceptScore W4319069146C124101348 @default.
- W4319069146 hasConceptScore W4319069146C129848803 @default.
- W4319069146 hasConceptScore W4319069146C134306372 @default.