Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319069218> ?p ?o ?g. }
- W4319069218 endingPage "12" @default.
- W4319069218 startingPage "1" @default.
- W4319069218 abstract "To detect and identify QRS complexes and R-peak is one of the crucial steps in the field of electrocardiogram (ECG) signals research, and their detection accuracy directly affects the performance of the subsequent ECG signal processing and analysis. However, the task involving the detection and identification of the ECG features becomes so complex for the traditional threshold-based detection methods. At present, researchers turn to deep learning approaches but little work has been done on the detection of spatiotemporal features of the QRS complexes. In this paper, for better QRS complexes and R-peak detection, we propose a novel method based on the improved U-net model, called ST-Res U-net. This uniquely designed component of the improved U-net model is made up of four levels of ST Block (the block extracting spatial-temporal features) and Res Path (the residual path). The entire framework contains three steps, data preprocessing dealing with denoising of the raw ECG signals, the key component ST-Res U-net dealing with the spatiotemporal feature extraction, and a threshold screening algorithm for locating the R-peaks. Our experiments are purposedly designed to test various combination structures of the ST blocks. The training and testing are from the MIT-BIH arrhythmia database (MITDB) and the CPSC2019 database. We adopt a commonly used set of evaluation criteria with the following experimental results: 99.76% and 90.01% for sensitivity, 99.87% and 93.5% for positive predictivity rate, 99.81% and 91.75% for F1 value, and 0.37% and 15.24% for detection error rate. The former numbers are for MITDB and the latter CPSC2019. Further, we test the proposed method on the PTB-XL database (without labeled R-peak positions) and the method can accurately locate QRS complexes and R-peaks The experimental results demonstrate that the proposed model and method is quite effective for the automatic classification and annotation of ECG signals and thus greatly improves the accuracy of diagnosis of arrhythmia diseases." @default.
- W4319069218 created "2023-02-04" @default.
- W4319069218 creator A5009923576 @default.
- W4319069218 creator A5041660329 @default.
- W4319069218 creator A5042657271 @default.
- W4319069218 creator A5061399269 @default.
- W4319069218 creator A5068908694 @default.
- W4319069218 date "2023-01-01" @default.
- W4319069218 modified "2023-09-27" @default.
- W4319069218 title "ECG Signals Segmentation Using Deep Spatiotemporal Feature Fusion U-Net for QRS Complexes and R-Peak Detection" @default.
- W4319069218 cites W1939789023 @default.
- W4319069218 cites W1988183757 @default.
- W4319069218 cites W2020867940 @default.
- W4319069218 cites W2033669206 @default.
- W4319069218 cites W2042061780 @default.
- W4319069218 cites W2077967181 @default.
- W4319069218 cites W2080883481 @default.
- W4319069218 cites W2093513096 @default.
- W4319069218 cites W2095409369 @default.
- W4319069218 cites W2098816250 @default.
- W4319069218 cites W2117736816 @default.
- W4319069218 cites W2162273778 @default.
- W4319069218 cites W2522767410 @default.
- W4319069218 cites W2547478161 @default.
- W4319069218 cites W2552926193 @default.
- W4319069218 cites W2584017349 @default.
- W4319069218 cites W2592929672 @default.
- W4319069218 cites W2745794687 @default.
- W4319069218 cites W2784247182 @default.
- W4319069218 cites W2792954102 @default.
- W4319069218 cites W2897717822 @default.
- W4319069218 cites W2905877654 @default.
- W4319069218 cites W2913789442 @default.
- W4319069218 cites W2928133111 @default.
- W4319069218 cites W2952613254 @default.
- W4319069218 cites W2965129705 @default.
- W4319069218 cites W2970976899 @default.
- W4319069218 cites W2977638463 @default.
- W4319069218 cites W2989905481 @default.
- W4319069218 cites W3002528505 @default.
- W4319069218 cites W3081072690 @default.
- W4319069218 cites W3086094900 @default.
- W4319069218 cites W3108870204 @default.
- W4319069218 cites W3111930466 @default.
- W4319069218 cites W3162046547 @default.
- W4319069218 cites W3162118882 @default.
- W4319069218 cites W3162831506 @default.
- W4319069218 cites W3180942533 @default.
- W4319069218 cites W3201016655 @default.
- W4319069218 cites W3202898586 @default.
- W4319069218 cites W4288783930 @default.
- W4319069218 doi "https://doi.org/10.1109/tim.2023.3241997" @default.
- W4319069218 hasPublicationYear "2023" @default.
- W4319069218 type Work @default.
- W4319069218 citedByCount "0" @default.
- W4319069218 crossrefType "journal-article" @default.
- W4319069218 hasAuthorship W4319069218A5009923576 @default.
- W4319069218 hasAuthorship W4319069218A5041660329 @default.
- W4319069218 hasAuthorship W4319069218A5042657271 @default.
- W4319069218 hasAuthorship W4319069218A5061399269 @default.
- W4319069218 hasAuthorship W4319069218A5068908694 @default.
- W4319069218 hasConcept C111773187 @default.
- W4319069218 hasConcept C11413529 @default.
- W4319069218 hasConcept C127413603 @default.
- W4319069218 hasConcept C138885662 @default.
- W4319069218 hasConcept C153180895 @default.
- W4319069218 hasConcept C154945302 @default.
- W4319069218 hasConcept C155512373 @default.
- W4319069218 hasConcept C164705383 @default.
- W4319069218 hasConcept C21200559 @default.
- W4319069218 hasConcept C24326235 @default.
- W4319069218 hasConcept C2524010 @default.
- W4319069218 hasConcept C2776401178 @default.
- W4319069218 hasConcept C2777210771 @default.
- W4319069218 hasConcept C33923547 @default.
- W4319069218 hasConcept C34736171 @default.
- W4319069218 hasConcept C41008148 @default.
- W4319069218 hasConcept C41895202 @default.
- W4319069218 hasConcept C52622490 @default.
- W4319069218 hasConcept C71924100 @default.
- W4319069218 hasConcept C89600930 @default.
- W4319069218 hasConceptScore W4319069218C111773187 @default.
- W4319069218 hasConceptScore W4319069218C11413529 @default.
- W4319069218 hasConceptScore W4319069218C127413603 @default.
- W4319069218 hasConceptScore W4319069218C138885662 @default.
- W4319069218 hasConceptScore W4319069218C153180895 @default.
- W4319069218 hasConceptScore W4319069218C154945302 @default.
- W4319069218 hasConceptScore W4319069218C155512373 @default.
- W4319069218 hasConceptScore W4319069218C164705383 @default.
- W4319069218 hasConceptScore W4319069218C21200559 @default.
- W4319069218 hasConceptScore W4319069218C24326235 @default.
- W4319069218 hasConceptScore W4319069218C2524010 @default.
- W4319069218 hasConceptScore W4319069218C2776401178 @default.
- W4319069218 hasConceptScore W4319069218C2777210771 @default.
- W4319069218 hasConceptScore W4319069218C33923547 @default.
- W4319069218 hasConceptScore W4319069218C34736171 @default.
- W4319069218 hasConceptScore W4319069218C41008148 @default.
- W4319069218 hasConceptScore W4319069218C41895202 @default.