Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319075008> ?p ?o ?g. }
- W4319075008 endingPage "115075" @default.
- W4319075008 startingPage "115075" @default.
- W4319075008 abstract "Human leukocyte antigen (HLA) plays a vital role in immunomodulatory function. Studies have shown that immunotherapy based on non-classical HLA has essential applications in cancer, COVID-19, and allergic diseases. However, there are few deep learning methods to predict non-classical HLA alleles. In this work, an adaptive dual-attention network named DapNet-HLA is established based on existing datasets. Firstly, amino acid sequences are transformed into digital vectors by looking up the table. To overcome the feature sparsity problem caused by unique one-hot encoding, the fused word embedding method is used to map each amino acid to a low-dimensional word vector optimized with the training of the classifier. Then, we use the GCB (group convolution block), SENet attention (squeeze-and-excitation networks), BiLSTM (bidirectional long short-term memory network), and Bahdanau attention mechanism to construct the classifier. The use of SENet can make the weight of the effective feature map high, so that the model can be trained to achieve better results. Attention mechanism is an Encoder-Decoder model used to improve the effectiveness of RNN, LSTM or GRU (gated recurrent neural network). The ablation experiment shows that DapNet-HLA has the best adaptability for five datasets. On the five test datasets, the ACC index and MCC index of DapNet-HLA are 4.89% and 0.0933 higher than the comparison method, respectively. According to the ROC curve and PR curve verified by the 5-fold cross-validation, the AUC value of each fold has a slight fluctuation, which proves the robustness of the DapNet-HLA. The codes and datasets are accessible at https://github.com/JYY625/DapNet-HLA." @default.
- W4319075008 created "2023-02-04" @default.
- W4319075008 creator A5025648698 @default.
- W4319075008 creator A5062666066 @default.
- W4319075008 creator A5065997024 @default.
- W4319075008 date "2023-04-01" @default.
- W4319075008 modified "2023-09-27" @default.
- W4319075008 title "DapNet-HLA: Adaptive dual-attention mechanism network based on deep learning to predict non-classical HLA binding sites" @default.
- W4319075008 cites W1532423969 @default.
- W4319075008 cites W1980662641 @default.
- W4319075008 cites W1989166597 @default.
- W4319075008 cites W2009003919 @default.
- W4319075008 cites W2018897975 @default.
- W4319075008 cites W2042594873 @default.
- W4319075008 cites W2069904417 @default.
- W4319075008 cites W2075462420 @default.
- W4319075008 cites W2079482424 @default.
- W4319075008 cites W2088945279 @default.
- W4319075008 cites W2090636839 @default.
- W4319075008 cites W2096428863 @default.
- W4319075008 cites W2098740129 @default.
- W4319075008 cites W2116171543 @default.
- W4319075008 cites W2119345671 @default.
- W4319075008 cites W2131424931 @default.
- W4319075008 cites W2141818629 @default.
- W4319075008 cites W2147863530 @default.
- W4319075008 cites W2149493322 @default.
- W4319075008 cites W2158266834 @default.
- W4319075008 cites W2161710954 @default.
- W4319075008 cites W2462539656 @default.
- W4319075008 cites W2513660241 @default.
- W4319075008 cites W2616215756 @default.
- W4319075008 cites W2618530766 @default.
- W4319075008 cites W2765651856 @default.
- W4319075008 cites W2908663744 @default.
- W4319075008 cites W2943935116 @default.
- W4319075008 cites W2953065444 @default.
- W4319075008 cites W2953561684 @default.
- W4319075008 cites W2965413325 @default.
- W4319075008 cites W2971769670 @default.
- W4319075008 cites W2974333724 @default.
- W4319075008 cites W2979882137 @default.
- W4319075008 cites W2997066259 @default.
- W4319075008 cites W3035873961 @default.
- W4319075008 cites W3042910002 @default.
- W4319075008 cites W3092443176 @default.
- W4319075008 cites W3120046290 @default.
- W4319075008 cites W3122585911 @default.
- W4319075008 cites W3164453494 @default.
- W4319075008 cites W3164941572 @default.
- W4319075008 cites W3180669414 @default.
- W4319075008 cites W3198814330 @default.
- W4319075008 cites W4206722897 @default.
- W4319075008 cites W4210810268 @default.
- W4319075008 cites W4224943415 @default.
- W4319075008 cites W4225324735 @default.
- W4319075008 cites W4249816251 @default.
- W4319075008 cites W4280539530 @default.
- W4319075008 cites W4282926623 @default.
- W4319075008 cites W4300818890 @default.
- W4319075008 doi "https://doi.org/10.1016/j.ab.2023.115075" @default.
- W4319075008 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36740003" @default.
- W4319075008 hasPublicationYear "2023" @default.
- W4319075008 type Work @default.
- W4319075008 citedByCount "2" @default.
- W4319075008 countsByYear W43190750082023 @default.
- W4319075008 crossrefType "journal-article" @default.
- W4319075008 hasAuthorship W4319075008A5025648698 @default.
- W4319075008 hasAuthorship W4319075008A5062666066 @default.
- W4319075008 hasAuthorship W4319075008A5065997024 @default.
- W4319075008 hasConcept C119857082 @default.
- W4319075008 hasConcept C147483822 @default.
- W4319075008 hasConcept C153180895 @default.
- W4319075008 hasConcept C154945302 @default.
- W4319075008 hasConcept C188280979 @default.
- W4319075008 hasConcept C22019652 @default.
- W4319075008 hasConcept C41008148 @default.
- W4319075008 hasConcept C50644808 @default.
- W4319075008 hasConcept C54355233 @default.
- W4319075008 hasConcept C58471807 @default.
- W4319075008 hasConcept C86803240 @default.
- W4319075008 hasConcept C95623464 @default.
- W4319075008 hasConceptScore W4319075008C119857082 @default.
- W4319075008 hasConceptScore W4319075008C147483822 @default.
- W4319075008 hasConceptScore W4319075008C153180895 @default.
- W4319075008 hasConceptScore W4319075008C154945302 @default.
- W4319075008 hasConceptScore W4319075008C188280979 @default.
- W4319075008 hasConceptScore W4319075008C22019652 @default.
- W4319075008 hasConceptScore W4319075008C41008148 @default.
- W4319075008 hasConceptScore W4319075008C50644808 @default.
- W4319075008 hasConceptScore W4319075008C54355233 @default.
- W4319075008 hasConceptScore W4319075008C58471807 @default.
- W4319075008 hasConceptScore W4319075008C86803240 @default.
- W4319075008 hasConceptScore W4319075008C95623464 @default.
- W4319075008 hasFunder F4320321001 @default.
- W4319075008 hasLocation W43190750081 @default.
- W4319075008 hasLocation W43190750082 @default.
- W4319075008 hasOpenAccess W4319075008 @default.