Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319080440> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4319080440 endingPage "7" @default.
- W4319080440 startingPage "1" @default.
- W4319080440 abstract "Big data analysis (e.g., of RNA-seq data) usually involves machine learning and statistical computational analyses. Meticulous analysis might assist us to better understand the molecular mechanisms that underlie devastative neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases (AD and PD, respectively). Here, I review methods for big data analysis specifically from neurodegenerative disease patients. The computational methods may include sample classification (e.g., PCA/HCL/t-SNE), cell-type-specific analysis, network analyses, and computation of statistical p-value. Additionally, meticulous analyses of alternative splicing and inflammation may be involved. The software for analyses may include MATLAB, R MySQL, and Python. Specifically, single-cell data may be analyzed. Furthermore, the data may be subsequently compared to data from young compared to old postmortem brain sample exon microarray data (produced by the UKBEC). So far several genes were identified as involved in AD including microglia and neuronal cell marker genes (e.g., TREM, CD33). However the majority of disease molecular mechanisms and underlying genes are still largely unclear. Validation of cell-type-specific findings may include cell specific quantification (e.g., of oligodendrocytes or neurons). Recently, a large cohort of amyotrophic lateral sclerosis (ALS) patient’s genomic data was also collected and may be subjected to analysis. Specifically, protein domains related to the disease progression may be identified. The samples are typically collected from human patient’s blood. These research avenues may provide hope for future genomic therapeutics for these devastative diseases." @default.
- W4319080440 created "2023-02-04" @default.
- W4319080440 creator A5034725945 @default.
- W4319080440 date "2023-01-01" @default.
- W4319080440 modified "2023-09-27" @default.
- W4319080440 title "Big Data and Neurodegeneration Disorders" @default.
- W4319080440 cites W2066398961 @default.
- W4319080440 cites W2165907044 @default.
- W4319080440 cites W2466804257 @default.
- W4319080440 cites W2568020671 @default.
- W4319080440 cites W2588025094 @default.
- W4319080440 cites W2894787694 @default.
- W4319080440 cites W2994786793 @default.
- W4319080440 cites W903474576 @default.
- W4319080440 doi "https://doi.org/10.1007/978-981-19-3949-5_11-1" @default.
- W4319080440 hasPublicationYear "2023" @default.
- W4319080440 type Work @default.
- W4319080440 citedByCount "0" @default.
- W4319080440 crossrefType "book-chapter" @default.
- W4319080440 hasAuthorship W4319080440A5034725945 @default.
- W4319080440 hasConcept C142724271 @default.
- W4319080440 hasConcept C169760540 @default.
- W4319080440 hasConcept C2776925932 @default.
- W4319080440 hasConcept C2778641062 @default.
- W4319080440 hasConcept C2779134260 @default.
- W4319080440 hasConcept C2779483572 @default.
- W4319080440 hasConcept C2780596555 @default.
- W4319080440 hasConcept C60644358 @default.
- W4319080440 hasConcept C70721500 @default.
- W4319080440 hasConcept C71924100 @default.
- W4319080440 hasConcept C86803240 @default.
- W4319080440 hasConceptScore W4319080440C142724271 @default.
- W4319080440 hasConceptScore W4319080440C169760540 @default.
- W4319080440 hasConceptScore W4319080440C2776925932 @default.
- W4319080440 hasConceptScore W4319080440C2778641062 @default.
- W4319080440 hasConceptScore W4319080440C2779134260 @default.
- W4319080440 hasConceptScore W4319080440C2779483572 @default.
- W4319080440 hasConceptScore W4319080440C2780596555 @default.
- W4319080440 hasConceptScore W4319080440C60644358 @default.
- W4319080440 hasConceptScore W4319080440C70721500 @default.
- W4319080440 hasConceptScore W4319080440C71924100 @default.
- W4319080440 hasConceptScore W4319080440C86803240 @default.
- W4319080440 hasLocation W43190804401 @default.
- W4319080440 hasOpenAccess W4319080440 @default.
- W4319080440 hasPrimaryLocation W43190804401 @default.
- W4319080440 hasRelatedWork W2108191354 @default.
- W4319080440 hasRelatedWork W2274862391 @default.
- W4319080440 hasRelatedWork W2407678288 @default.
- W4319080440 hasRelatedWork W2517534055 @default.
- W4319080440 hasRelatedWork W2771450485 @default.
- W4319080440 hasRelatedWork W2980877881 @default.
- W4319080440 hasRelatedWork W3033978592 @default.
- W4319080440 hasRelatedWork W3128136672 @default.
- W4319080440 hasRelatedWork W4247407265 @default.
- W4319080440 hasRelatedWork W4256606937 @default.
- W4319080440 isParatext "false" @default.
- W4319080440 isRetracted "false" @default.
- W4319080440 workType "book-chapter" @default.