Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319081566> ?p ?o ?g. }
- W4319081566 endingPage "118741" @default.
- W4319081566 startingPage "118741" @default.
- W4319081566 abstract "Although significant progress has been made in predicting the local structural instability of various disordered systems through the development of supervised machine learning (ML) models, the generalization and interpretability of these models remain to be addressed. Based on the systematic analysis, we find that there is a significant correlation between the weighting function of the ML prediction model and the radial distribution function (RDF) of the predicted system. We further propose a density-fluctuation model with the radial symmetry function of each atom as the local structural descriptor and the modified global RDF as the weighting function. Unlike the recent ML prediction models, which need to utilize dynamic information as a monitoring signal, this model is only based on static structure information and has a good generalization ability. The model can provide a more reliable prediction ability of structural instability for different MG systems than other widely-investigated structural parameters. Our findings reveal the density-fluctuation features of the local structural instability and shed some light on the structure-property relations in disordered materials." @default.
- W4319081566 created "2023-02-04" @default.
- W4319081566 creator A5039197849 @default.
- W4319081566 creator A5052897084 @default.
- W4319081566 creator A5075986827 @default.
- W4319081566 creator A5076608470 @default.
- W4319081566 date "2023-04-01" @default.
- W4319081566 modified "2023-10-16" @default.
- W4319081566 title "Machine-learning inspired density-fluctuation model of local structural instability in metallic glasses" @default.
- W4319081566 cites W1535846506 @default.
- W4319081566 cites W164983590 @default.
- W4319081566 cites W1653517664 @default.
- W4319081566 cites W1965157313 @default.
- W4319081566 cites W1966040932 @default.
- W4319081566 cites W1991649225 @default.
- W4319081566 cites W2011240043 @default.
- W4319081566 cites W2017196167 @default.
- W4319081566 cites W2019465613 @default.
- W4319081566 cites W2033458769 @default.
- W4319081566 cites W2046821899 @default.
- W4319081566 cites W2072637332 @default.
- W4319081566 cites W2073772155 @default.
- W4319081566 cites W2088447333 @default.
- W4319081566 cites W2094247849 @default.
- W4319081566 cites W2101466574 @default.
- W4319081566 cites W2125297502 @default.
- W4319081566 cites W2153635508 @default.
- W4319081566 cites W2153964123 @default.
- W4319081566 cites W2206174407 @default.
- W4319081566 cites W2270699679 @default.
- W4319081566 cites W2325736187 @default.
- W4319081566 cites W2337041273 @default.
- W4319081566 cites W2338607505 @default.
- W4319081566 cites W2473272528 @default.
- W4319081566 cites W2558666943 @default.
- W4319081566 cites W2602854228 @default.
- W4319081566 cites W2760818315 @default.
- W4319081566 cites W2770290347 @default.
- W4319081566 cites W2888599914 @default.
- W4319081566 cites W2911769604 @default.
- W4319081566 cites W2948114361 @default.
- W4319081566 cites W2993513720 @default.
- W4319081566 cites W3012010499 @default.
- W4319081566 cites W3014178136 @default.
- W4319081566 cites W3036633891 @default.
- W4319081566 cites W3111457057 @default.
- W4319081566 cites W3122869456 @default.
- W4319081566 cites W3136044003 @default.
- W4319081566 cites W3140798432 @default.
- W4319081566 cites W4225856091 @default.
- W4319081566 doi "https://doi.org/10.1016/j.actamat.2023.118741" @default.
- W4319081566 hasPublicationYear "2023" @default.
- W4319081566 type Work @default.
- W4319081566 citedByCount "6" @default.
- W4319081566 countsByYear W43190815662023 @default.
- W4319081566 crossrefType "journal-article" @default.
- W4319081566 hasAuthorship W4319081566A5039197849 @default.
- W4319081566 hasAuthorship W4319081566A5052897084 @default.
- W4319081566 hasAuthorship W4319081566A5075986827 @default.
- W4319081566 hasAuthorship W4319081566A5076608470 @default.
- W4319081566 hasConcept C112972136 @default.
- W4319081566 hasConcept C119857082 @default.
- W4319081566 hasConcept C121332964 @default.
- W4319081566 hasConcept C121864883 @default.
- W4319081566 hasConcept C134306372 @default.
- W4319081566 hasConcept C135508586 @default.
- W4319081566 hasConcept C14036430 @default.
- W4319081566 hasConcept C154945302 @default.
- W4319081566 hasConcept C177148314 @default.
- W4319081566 hasConcept C183115368 @default.
- W4319081566 hasConcept C186060115 @default.
- W4319081566 hasConcept C192562407 @default.
- W4319081566 hasConcept C207821765 @default.
- W4319081566 hasConcept C24890656 @default.
- W4319081566 hasConcept C2781067378 @default.
- W4319081566 hasConcept C33923547 @default.
- W4319081566 hasConcept C41008148 @default.
- W4319081566 hasConcept C57879066 @default.
- W4319081566 hasConcept C59593255 @default.
- W4319081566 hasConcept C62520636 @default.
- W4319081566 hasConcept C78458016 @default.
- W4319081566 hasConcept C86803240 @default.
- W4319081566 hasConceptScore W4319081566C112972136 @default.
- W4319081566 hasConceptScore W4319081566C119857082 @default.
- W4319081566 hasConceptScore W4319081566C121332964 @default.
- W4319081566 hasConceptScore W4319081566C121864883 @default.
- W4319081566 hasConceptScore W4319081566C134306372 @default.
- W4319081566 hasConceptScore W4319081566C135508586 @default.
- W4319081566 hasConceptScore W4319081566C14036430 @default.
- W4319081566 hasConceptScore W4319081566C154945302 @default.
- W4319081566 hasConceptScore W4319081566C177148314 @default.
- W4319081566 hasConceptScore W4319081566C183115368 @default.
- W4319081566 hasConceptScore W4319081566C186060115 @default.
- W4319081566 hasConceptScore W4319081566C192562407 @default.
- W4319081566 hasConceptScore W4319081566C207821765 @default.
- W4319081566 hasConceptScore W4319081566C24890656 @default.
- W4319081566 hasConceptScore W4319081566C2781067378 @default.
- W4319081566 hasConceptScore W4319081566C33923547 @default.