Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319081567> ?p ?o ?g. }
- W4319081567 endingPage "130610" @default.
- W4319081567 startingPage "130610" @default.
- W4319081567 abstract "Cemented tailings and waste-rock backfill (CTWB) is an effective way to solve the problem of mine solid waste. Waste-rock content is an important factor affecting UCS, but fully understanding the mechanism of waste-rock action on UCS would require extensive indoor testing, which would be tedious and expensive. Therefore, the mechanical properties of CTWB were investigated using a combination of laboratory testing and deep learning. Long short-term memory (LSTM) network prediction model based on genetic algorithm (GA) optimization was developed with cement content (290 ∼ 330 kg/m3), solid content (75 ∼ 81%), waste-rock content (40 ∼ 70%), and curing age as input variables and unconfined compressive strength (UCS) as output variables. Among them, the population size of GA was set to 40, and the crossover rate and mutation rate were set to 0.75 and 0.01, respectively. The study evaluated the models using RMSE, R2, and MAE and plotted normalized Taylor diagrams for different prediction models. The results show that the GA algorithm is effective for the parameter rectification of the LSTM model. The representative GA-LSTM model has an R2 of 0.9956 in the training set and an R2 of 0.9763 in the test set, indicating a good prediction effect. Deep learning models exhibit higher accuracy than machine learning models. Compared with GA-SVM, LSTM, and PSO-LSTM models, R2 increases from 0.9483, 0.8474, and 0.9611 to 0.9968, respectively, indicating that the model has good robustness and generalization ability. Moreover, the correlation analysis shows that the UCS reaches the maximum value when the waste rock content is 50%, and the hydration products can effectively fill the pores and form a more stable internal structure. The research results will provide technical support for safe, clean, and efficient recovery." @default.
- W4319081567 created "2023-02-04" @default.
- W4319081567 creator A5007697588 @default.
- W4319081567 creator A5007746132 @default.
- W4319081567 creator A5016059507 @default.
- W4319081567 creator A5060718181 @default.
- W4319081567 creator A5082634824 @default.
- W4319081567 creator A5083857025 @default.
- W4319081567 date "2023-03-01" @default.
- W4319081567 modified "2023-10-14" @default.
- W4319081567 title "Mechanical properties of cemented tailings and waste-rock backfill (CTWB) materials: Laboratory tests and deep learning modeling" @default.
- W4319081567 cites W1965927885 @default.
- W4319081567 cites W1985258458 @default.
- W4319081567 cites W2020655850 @default.
- W4319081567 cites W2024952796 @default.
- W4319081567 cites W2064675550 @default.
- W4319081567 cites W2100495367 @default.
- W4319081567 cites W2218364243 @default.
- W4319081567 cites W2767363635 @default.
- W4319081567 cites W2885027652 @default.
- W4319081567 cites W2950172824 @default.
- W4319081567 cites W2974487923 @default.
- W4319081567 cites W2980535327 @default.
- W4319081567 cites W2980539464 @default.
- W4319081567 cites W3011513291 @default.
- W4319081567 cites W3020708207 @default.
- W4319081567 cites W3047195928 @default.
- W4319081567 cites W3085866332 @default.
- W4319081567 cites W3108464452 @default.
- W4319081567 cites W3134995380 @default.
- W4319081567 cites W3157818903 @default.
- W4319081567 cites W3172068286 @default.
- W4319081567 cites W3192537868 @default.
- W4319081567 cites W3205351702 @default.
- W4319081567 cites W4206367093 @default.
- W4319081567 cites W4210452453 @default.
- W4319081567 cites W4220838795 @default.
- W4319081567 cites W4220897311 @default.
- W4319081567 cites W4221114306 @default.
- W4319081567 cites W4225132386 @default.
- W4319081567 cites W4295046108 @default.
- W4319081567 doi "https://doi.org/10.1016/j.conbuildmat.2023.130610" @default.
- W4319081567 hasPublicationYear "2023" @default.
- W4319081567 type Work @default.
- W4319081567 citedByCount "4" @default.
- W4319081567 countsByYear W43190815672023 @default.
- W4319081567 crossrefType "journal-article" @default.
- W4319081567 hasAuthorship W4319081567A5007697588 @default.
- W4319081567 hasAuthorship W4319081567A5007746132 @default.
- W4319081567 hasAuthorship W4319081567A5016059507 @default.
- W4319081567 hasAuthorship W4319081567A5060718181 @default.
- W4319081567 hasAuthorship W4319081567A5082634824 @default.
- W4319081567 hasAuthorship W4319081567A5083857025 @default.
- W4319081567 hasConcept C119857082 @default.
- W4319081567 hasConcept C122507166 @default.
- W4319081567 hasConcept C127413603 @default.
- W4319081567 hasConcept C154945302 @default.
- W4319081567 hasConcept C159985019 @default.
- W4319081567 hasConcept C187320778 @default.
- W4319081567 hasConcept C191897082 @default.
- W4319081567 hasConcept C192562407 @default.
- W4319081567 hasConcept C30407753 @default.
- W4319081567 hasConcept C41008148 @default.
- W4319081567 hasConcept C5166401 @default.
- W4319081567 hasConcept C523993062 @default.
- W4319081567 hasConcept C8880873 @default.
- W4319081567 hasConceptScore W4319081567C119857082 @default.
- W4319081567 hasConceptScore W4319081567C122507166 @default.
- W4319081567 hasConceptScore W4319081567C127413603 @default.
- W4319081567 hasConceptScore W4319081567C154945302 @default.
- W4319081567 hasConceptScore W4319081567C159985019 @default.
- W4319081567 hasConceptScore W4319081567C187320778 @default.
- W4319081567 hasConceptScore W4319081567C191897082 @default.
- W4319081567 hasConceptScore W4319081567C192562407 @default.
- W4319081567 hasConceptScore W4319081567C30407753 @default.
- W4319081567 hasConceptScore W4319081567C41008148 @default.
- W4319081567 hasConceptScore W4319081567C5166401 @default.
- W4319081567 hasConceptScore W4319081567C523993062 @default.
- W4319081567 hasConceptScore W4319081567C8880873 @default.
- W4319081567 hasFunder F4320321001 @default.
- W4319081567 hasFunder F4320327912 @default.
- W4319081567 hasFunder F4320335777 @default.
- W4319081567 hasLocation W43190815671 @default.
- W4319081567 hasOpenAccess W4319081567 @default.
- W4319081567 hasPrimaryLocation W43190815671 @default.
- W4319081567 hasRelatedWork W2014162767 @default.
- W4319081567 hasRelatedWork W2046083801 @default.
- W4319081567 hasRelatedWork W2115729582 @default.
- W4319081567 hasRelatedWork W2213534948 @default.
- W4319081567 hasRelatedWork W2367260997 @default.
- W4319081567 hasRelatedWork W2558498902 @default.
- W4319081567 hasRelatedWork W2973500171 @default.
- W4319081567 hasRelatedWork W3114856191 @default.
- W4319081567 hasRelatedWork W3122521237 @default.
- W4319081567 hasRelatedWork W4306362096 @default.
- W4319081567 hasVolume "369" @default.
- W4319081567 isParatext "false" @default.
- W4319081567 isRetracted "false" @default.