Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319082353> ?p ?o ?g. }
- W4319082353 endingPage "763" @default.
- W4319082353 startingPage "763" @default.
- W4319082353 abstract "The presence of environmental microorganisms is inevitable in our surroundings, and segmentation is essential for researchers to identify, understand, and utilize the microorganisms; make use of their benefits; and prevent harm. However, the segmentation of environmental microorganisms is challenging because their vague margins are almost transparent compared with those of the environment. In this study, we propose a network with an uncertainty feedback module to find ambiguous boundaries and regions and an attention module to localize the major region of the microorganism. Furthermore, we apply a mid-pred module to output low-resolution segmentation results directly from decoder blocks at each level. This module can help the encoder and decoder capture details from different scales. Finally, we use multi-loss to guide the training. Rigorous experimental evaluations on the benchmark dataset demonstrate that our method achieves higher scores than other sophisticated network models (95.63% accuracy, 89.90% Dice, 81.65% Jaccard, 94.68% recall, 0.59 ASD, 2.24 HD95, and 85.58% precision) and outperforms them." @default.
- W4319082353 created "2023-02-04" @default.
- W4319082353 creator A5030431833 @default.
- W4319082353 creator A5056036725 @default.
- W4319082353 creator A5086280684 @default.
- W4319082353 date "2023-02-02" @default.
- W4319082353 modified "2023-10-05" @default.
- W4319082353 title "An Attention-Based Uncertainty Revising Network with Multi-Loss for Environmental Microorganism Segmentation" @default.
- W4319082353 cites W1486110309 @default.
- W4319082353 cites W1677182931 @default.
- W4319082353 cites W1901129140 @default.
- W4319082353 cites W1903029394 @default.
- W4319082353 cites W1909234690 @default.
- W4319082353 cites W1991248611 @default.
- W4319082353 cites W1997709480 @default.
- W4319082353 cites W2003436630 @default.
- W4319082353 cites W2101541454 @default.
- W4319082353 cites W2112546694 @default.
- W4319082353 cites W2133059825 @default.
- W4319082353 cites W2143516773 @default.
- W4319082353 cites W2152632881 @default.
- W4319082353 cites W2161160262 @default.
- W4319082353 cites W2507296351 @default.
- W4319082353 cites W2563705555 @default.
- W4319082353 cites W2735225760 @default.
- W4319082353 cites W2738600695 @default.
- W4319082353 cites W2752782242 @default.
- W4319082353 cites W2777517892 @default.
- W4319082353 cites W2884585870 @default.
- W4319082353 cites W2903085986 @default.
- W4319082353 cites W2963712920 @default.
- W4319082353 cites W2963881378 @default.
- W4319082353 cites W2964309882 @default.
- W4319082353 cites W2996290406 @default.
- W4319082353 cites W3035358681 @default.
- W4319082353 cites W3102654168 @default.
- W4319082353 cites W3132941258 @default.
- W4319082353 cites W3164123149 @default.
- W4319082353 cites W3177052299 @default.
- W4319082353 cites W3196904463 @default.
- W4319082353 cites W3207213789 @default.
- W4319082353 cites W4214520160 @default.
- W4319082353 cites W4214893857 @default.
- W4319082353 cites W4313472517 @default.
- W4319082353 cites W4317206922 @default.
- W4319082353 doi "https://doi.org/10.3390/electronics12030763" @default.
- W4319082353 hasPublicationYear "2023" @default.
- W4319082353 type Work @default.
- W4319082353 citedByCount "0" @default.
- W4319082353 crossrefType "journal-article" @default.
- W4319082353 hasAuthorship W4319082353A5030431833 @default.
- W4319082353 hasAuthorship W4319082353A5056036725 @default.
- W4319082353 hasAuthorship W4319082353A5086280684 @default.
- W4319082353 hasBestOaLocation W43190823531 @default.
- W4319082353 hasConcept C105795698 @default.
- W4319082353 hasConcept C111919701 @default.
- W4319082353 hasConcept C118505674 @default.
- W4319082353 hasConcept C119857082 @default.
- W4319082353 hasConcept C124101348 @default.
- W4319082353 hasConcept C153180895 @default.
- W4319082353 hasConcept C154945302 @default.
- W4319082353 hasConcept C185798385 @default.
- W4319082353 hasConcept C203519979 @default.
- W4319082353 hasConcept C205649164 @default.
- W4319082353 hasConcept C22029948 @default.
- W4319082353 hasConcept C33923547 @default.
- W4319082353 hasConcept C41008148 @default.
- W4319082353 hasConcept C58640448 @default.
- W4319082353 hasConcept C81669768 @default.
- W4319082353 hasConcept C89600930 @default.
- W4319082353 hasConceptScore W4319082353C105795698 @default.
- W4319082353 hasConceptScore W4319082353C111919701 @default.
- W4319082353 hasConceptScore W4319082353C118505674 @default.
- W4319082353 hasConceptScore W4319082353C119857082 @default.
- W4319082353 hasConceptScore W4319082353C124101348 @default.
- W4319082353 hasConceptScore W4319082353C153180895 @default.
- W4319082353 hasConceptScore W4319082353C154945302 @default.
- W4319082353 hasConceptScore W4319082353C185798385 @default.
- W4319082353 hasConceptScore W4319082353C203519979 @default.
- W4319082353 hasConceptScore W4319082353C205649164 @default.
- W4319082353 hasConceptScore W4319082353C22029948 @default.
- W4319082353 hasConceptScore W4319082353C33923547 @default.
- W4319082353 hasConceptScore W4319082353C41008148 @default.
- W4319082353 hasConceptScore W4319082353C58640448 @default.
- W4319082353 hasConceptScore W4319082353C81669768 @default.
- W4319082353 hasConceptScore W4319082353C89600930 @default.
- W4319082353 hasIssue "3" @default.
- W4319082353 hasLocation W43190823531 @default.
- W4319082353 hasLocation W43190823532 @default.
- W4319082353 hasOpenAccess W4319082353 @default.
- W4319082353 hasPrimaryLocation W43190823531 @default.
- W4319082353 hasRelatedWork W2069533927 @default.
- W4319082353 hasRelatedWork W2971066617 @default.
- W4319082353 hasRelatedWork W3093926553 @default.
- W4319082353 hasRelatedWork W3094077541 @default.
- W4319082353 hasRelatedWork W3118494652 @default.
- W4319082353 hasRelatedWork W3120092106 @default.
- W4319082353 hasRelatedWork W3154368917 @default.