Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319083942> ?p ?o ?g. }
- W4319083942 abstract "Abstract COVID-19 mortality prediction Background COVID-19 has become a major global public health problem, despite prevention and efforts. The daily number of COVID-19 cases rapidly increases, and the time and financial costs associated with testing procedure are burdensome. Method To overcome this, we aim to identify immunological and metabolic biomarkers to predict COVID-19 mortality using a machine learning model. We included inpatients from Hong Kong’s public hospitals between January 1, and September 30, 2020, who were diagnosed with COVID-19 using RT-PCR. We developed three machine learning models to predict the mortality of COVID-19 patients based on data in their electronic medical records. We performed statistical analysis to compare the trained machine learning models which are Deep Neural Networks (DNN), Random Forest Classifier (RF) and Support Vector Machine (SVM) using data from a cohort of 5,059 patients (median age = 46 years; 49.3% male) who had tested positive for COVID-19 based on electronic health records and data from 532,427 patients as controls. Result We identified top 20 immunological and metabolic biomarkers that can accurately predict the risk of mortality from COVID-19 with ROC-AUC of 0.98 (95% CI 0.96-0.98). Of the three models used, our result demonstrate that the random forest (RF) model achieved the most accurate prediction of mortality among COVID-19 patients with age, glomerular filtration, albumin, urea, procalcitonin, c-reactive protein, oxygen, bicarbonate, carbon dioxide, ferritin, glucose, erythrocytes, creatinine, lymphocytes, PH of blood and leukocytes among the most important biomarkers identified. A cohort from Kwong Wah Hospital (131 patients) was used for model validation with ROC-AUC of 0.90 (95% CI 0.84-0.92). Conclusion We recommend physicians closely monitor hematological, coagulation, cardiac, hepatic, renal and inflammatory factors for potential progression to severe conditions among COVID-19 patients. To the best of our knowledge, no previous research has identified important immunological and metabolic biomarkers to the extent demonstrated in our study." @default.
- W4319083942 created "2023-02-04" @default.
- W4319083942 creator A5005474229 @default.
- W4319083942 creator A5024454252 @default.
- W4319083942 creator A5026064122 @default.
- W4319083942 creator A5036749688 @default.
- W4319083942 creator A5039562856 @default.
- W4319083942 creator A5044041259 @default.
- W4319083942 creator A5072192675 @default.
- W4319083942 creator A5079619000 @default.
- W4319083942 creator A5085882587 @default.
- W4319083942 date "2023-02-03" @default.
- W4319083942 modified "2023-10-05" @default.
- W4319083942 title "Machine learning-based prediction of COVID-19 mortality using immunological and metabolic biomarkers" @default.
- W4319083942 cites W2997096971 @default.
- W4319083942 cites W3002108456 @default.
- W4319083942 cites W3006642361 @default.
- W4319083942 cites W3012690941 @default.
- W4319083942 cites W3015671971 @default.
- W4319083942 cites W3016560194 @default.
- W4319083942 cites W3017022286 @default.
- W4319083942 cites W3020512604 @default.
- W4319083942 cites W3020710323 @default.
- W4319083942 cites W3023519397 @default.
- W4319083942 cites W3026888299 @default.
- W4319083942 cites W3029243274 @default.
- W4319083942 cites W3036653687 @default.
- W4319083942 cites W3037768701 @default.
- W4319083942 cites W3045165849 @default.
- W4319083942 cites W3047144258 @default.
- W4319083942 cites W3090115387 @default.
- W4319083942 cites W3091615192 @default.
- W4319083942 cites W3094585742 @default.
- W4319083942 cites W3134611703 @default.
- W4319083942 cites W3136252605 @default.
- W4319083942 cites W3137264488 @default.
- W4319083942 cites W3165325621 @default.
- W4319083942 cites W3165838540 @default.
- W4319083942 cites W4224302290 @default.
- W4319083942 doi "https://doi.org/10.1186/s44247-022-00001-0" @default.
- W4319083942 hasPublicationYear "2023" @default.
- W4319083942 type Work @default.
- W4319083942 citedByCount "1" @default.
- W4319083942 countsByYear W43190839422023 @default.
- W4319083942 crossrefType "journal-article" @default.
- W4319083942 hasAuthorship W4319083942A5005474229 @default.
- W4319083942 hasAuthorship W4319083942A5024454252 @default.
- W4319083942 hasAuthorship W4319083942A5026064122 @default.
- W4319083942 hasAuthorship W4319083942A5036749688 @default.
- W4319083942 hasAuthorship W4319083942A5039562856 @default.
- W4319083942 hasAuthorship W4319083942A5044041259 @default.
- W4319083942 hasAuthorship W4319083942A5072192675 @default.
- W4319083942 hasAuthorship W4319083942A5079619000 @default.
- W4319083942 hasAuthorship W4319083942A5085882587 @default.
- W4319083942 hasBestOaLocation W43190839421 @default.
- W4319083942 hasConcept C10936531 @default.
- W4319083942 hasConcept C119857082 @default.
- W4319083942 hasConcept C12267149 @default.
- W4319083942 hasConcept C126322002 @default.
- W4319083942 hasConcept C154945302 @default.
- W4319083942 hasConcept C169258074 @default.
- W4319083942 hasConcept C195910791 @default.
- W4319083942 hasConcept C2778384902 @default.
- W4319083942 hasConcept C2779134260 @default.
- W4319083942 hasConcept C2780306776 @default.
- W4319083942 hasConcept C3008058167 @default.
- W4319083942 hasConcept C41008148 @default.
- W4319083942 hasConcept C524204448 @default.
- W4319083942 hasConcept C71924100 @default.
- W4319083942 hasConceptScore W4319083942C10936531 @default.
- W4319083942 hasConceptScore W4319083942C119857082 @default.
- W4319083942 hasConceptScore W4319083942C12267149 @default.
- W4319083942 hasConceptScore W4319083942C126322002 @default.
- W4319083942 hasConceptScore W4319083942C154945302 @default.
- W4319083942 hasConceptScore W4319083942C169258074 @default.
- W4319083942 hasConceptScore W4319083942C195910791 @default.
- W4319083942 hasConceptScore W4319083942C2778384902 @default.
- W4319083942 hasConceptScore W4319083942C2779134260 @default.
- W4319083942 hasConceptScore W4319083942C2780306776 @default.
- W4319083942 hasConceptScore W4319083942C3008058167 @default.
- W4319083942 hasConceptScore W4319083942C41008148 @default.
- W4319083942 hasConceptScore W4319083942C524204448 @default.
- W4319083942 hasConceptScore W4319083942C71924100 @default.
- W4319083942 hasIssue "1" @default.
- W4319083942 hasLocation W43190839421 @default.
- W4319083942 hasOpenAccess W4319083942 @default.
- W4319083942 hasPrimaryLocation W43190839421 @default.
- W4319083942 hasRelatedWork W1996541855 @default.
- W4319083942 hasRelatedWork W2985924212 @default.
- W4319083942 hasRelatedWork W3195168932 @default.
- W4319083942 hasRelatedWork W3195610867 @default.
- W4319083942 hasRelatedWork W4308191010 @default.
- W4319083942 hasRelatedWork W4321636153 @default.
- W4319083942 hasRelatedWork W4323021782 @default.
- W4319083942 hasRelatedWork W4327511089 @default.
- W4319083942 hasRelatedWork W4377964522 @default.
- W4319083942 hasRelatedWork W4381414210 @default.
- W4319083942 hasVolume "1" @default.
- W4319083942 isParatext "false" @default.
- W4319083942 isRetracted "false" @default.