Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319084003> ?p ?o ?g. }
- W4319084003 endingPage "303" @default.
- W4319084003 startingPage "303" @default.
- W4319084003 abstract "Atmospheric water vapor is an essential source of information that predicts global climate change, rainfall, and disaster-natured weather. It is also a vital source of error for Earth observation systems, such as the global navigation satellite system (GNSS). The Zenith Tropospheric Delay (ZTD) plays a crucial role in applications, such as atmospheric water vapor inversion and GNSS precision positioning. ZTD has specific temporal and spatial variation characteristics. Real-time ZTD modeling is widely used in modern society. The conventional back propagation (BP) neural network model has issues, such as local, optimal, and long short-term memory (LSTM) model needs, which help by relying on long historical data. A regional/single station ZTD combination prediction model with high precision, efficiency, and suitability for online modeling was proposed. The model, called K-RBF, is based on the machine learning algorithms of radial basis function (RBF) neural network, assisted by the K-means cluster algorithm (K-RBF) and LSTM of real-time parameter updating (R-LSTM). An online updating mechanism is adopted to improve the modeling efficiency of the traditional LSTM. Taking the ZTD data (5 min sampling interval) of 13 international GNSS service stations in southern California in the United States for 90 consecutive days, K-RBF, R-LSTM, and K-RBF were used for regions, single stations, and a combination of ZTD prediction models regarding research, respectively. Real-time/near real-time prediction results show that the root-mean-square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and training time consumption (TTC) of the K-RBF model with 13 station data are 8.35 mm, 6.89 mm, 0.61, and 4.78 s, respectively. The accuracy and efficiency of the K-RBF model are improved compared with those of the conventional BP model. The RMSE, MAE, R2, and TTC of the R-LSTM model with WHC1 station data are 6.74 mm, 5.92 mm, 0.98, and 0.18 s, which improved by 67.43%, 66.42%, 63.33%, and 97.70% compared with those of the LSTM model. The comparison experiments of different historical observation data in 24 groups show that the real-time update model has strong applicability and accuracy for the time prediction of small sample data. The RMSE and MAE of K-RBF with 13 station data are 4.37 mm and 3.64 mm, which improved by 47.70% and 47.20% compared to K-RBF and by 28.48% and 31.29% compared to R-LSTM, respectively. The changes in the temporospatial features of ZTD are considered, as well, in the combination model." @default.
- W4319084003 created "2023-02-04" @default.
- W4319084003 creator A5005680984 @default.
- W4319084003 creator A5007492197 @default.
- W4319084003 creator A5007628397 @default.
- W4319084003 creator A5031112442 @default.
- W4319084003 creator A5069970667 @default.
- W4319084003 creator A5091640461 @default.
- W4319084003 date "2023-02-03" @default.
- W4319084003 modified "2023-10-18" @default.
- W4319084003 title "Regional/Single Station Zenith Tropospheric Delay Combination Prediction Model Based on Radial Basis Function Neural Network and Improved Long Short-Term Memory" @default.
- W4319084003 cites W1573972530 @default.
- W4319084003 cites W1986984027 @default.
- W4319084003 cites W2011430131 @default.
- W4319084003 cites W2064913849 @default.
- W4319084003 cites W2107442290 @default.
- W4319084003 cites W2112306707 @default.
- W4319084003 cites W2155399784 @default.
- W4319084003 cites W2160547390 @default.
- W4319084003 cites W2171277043 @default.
- W4319084003 cites W2174366170 @default.
- W4319084003 cites W2180980307 @default.
- W4319084003 cites W2203067242 @default.
- W4319084003 cites W2411271963 @default.
- W4319084003 cites W2567063110 @default.
- W4319084003 cites W2600102298 @default.
- W4319084003 cites W2794760869 @default.
- W4319084003 cites W2894673821 @default.
- W4319084003 cites W2944851425 @default.
- W4319084003 cites W2974115887 @default.
- W4319084003 cites W2997822790 @default.
- W4319084003 cites W3017112758 @default.
- W4319084003 cites W3117346578 @default.
- W4319084003 cites W3173627879 @default.
- W4319084003 cites W3210610608 @default.
- W4319084003 cites W4200337622 @default.
- W4319084003 cites W4205521101 @default.
- W4319084003 cites W4207039706 @default.
- W4319084003 cites W4285095590 @default.
- W4319084003 cites W4296087265 @default.
- W4319084003 cites W4309849630 @default.
- W4319084003 cites W4311765019 @default.
- W4319084003 cites W4312968934 @default.
- W4319084003 cites W4313408216 @default.
- W4319084003 doi "https://doi.org/10.3390/atmos14020303" @default.
- W4319084003 hasPublicationYear "2023" @default.
- W4319084003 type Work @default.
- W4319084003 citedByCount "0" @default.
- W4319084003 crossrefType "journal-article" @default.
- W4319084003 hasAuthorship W4319084003A5005680984 @default.
- W4319084003 hasAuthorship W4319084003A5007492197 @default.
- W4319084003 hasAuthorship W4319084003A5007628397 @default.
- W4319084003 hasAuthorship W4319084003A5031112442 @default.
- W4319084003 hasAuthorship W4319084003A5069970667 @default.
- W4319084003 hasAuthorship W4319084003A5091640461 @default.
- W4319084003 hasBestOaLocation W43190840031 @default.
- W4319084003 hasConcept C105795698 @default.
- W4319084003 hasConcept C127313418 @default.
- W4319084003 hasConcept C139945424 @default.
- W4319084003 hasConcept C14279187 @default.
- W4319084003 hasConcept C147534773 @default.
- W4319084003 hasConcept C147947694 @default.
- W4319084003 hasConcept C153294291 @default.
- W4319084003 hasConcept C154945302 @default.
- W4319084003 hasConcept C205649164 @default.
- W4319084003 hasConcept C22679943 @default.
- W4319084003 hasConcept C33923547 @default.
- W4319084003 hasConcept C39432304 @default.
- W4319084003 hasConcept C41008148 @default.
- W4319084003 hasConcept C50644808 @default.
- W4319084003 hasConcept C53970728 @default.
- W4319084003 hasConcept C60229501 @default.
- W4319084003 hasConcept C62649853 @default.
- W4319084003 hasConcept C76155785 @default.
- W4319084003 hasConcept C9075549 @default.
- W4319084003 hasConcept C98856871 @default.
- W4319084003 hasConceptScore W4319084003C105795698 @default.
- W4319084003 hasConceptScore W4319084003C127313418 @default.
- W4319084003 hasConceptScore W4319084003C139945424 @default.
- W4319084003 hasConceptScore W4319084003C14279187 @default.
- W4319084003 hasConceptScore W4319084003C147534773 @default.
- W4319084003 hasConceptScore W4319084003C147947694 @default.
- W4319084003 hasConceptScore W4319084003C153294291 @default.
- W4319084003 hasConceptScore W4319084003C154945302 @default.
- W4319084003 hasConceptScore W4319084003C205649164 @default.
- W4319084003 hasConceptScore W4319084003C22679943 @default.
- W4319084003 hasConceptScore W4319084003C33923547 @default.
- W4319084003 hasConceptScore W4319084003C39432304 @default.
- W4319084003 hasConceptScore W4319084003C41008148 @default.
- W4319084003 hasConceptScore W4319084003C50644808 @default.
- W4319084003 hasConceptScore W4319084003C53970728 @default.
- W4319084003 hasConceptScore W4319084003C60229501 @default.
- W4319084003 hasConceptScore W4319084003C62649853 @default.
- W4319084003 hasConceptScore W4319084003C76155785 @default.
- W4319084003 hasConceptScore W4319084003C9075549 @default.
- W4319084003 hasConceptScore W4319084003C98856871 @default.
- W4319084003 hasIssue "2" @default.
- W4319084003 hasLocation W43190840031 @default.