Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319084067> ?p ?o ?g. }
- W4319084067 endingPage "854" @default.
- W4319084067 startingPage "854" @default.
- W4319084067 abstract "LNC (leaf nitrogen content) in crops is significant for diagnosing the crop growth status and guiding fertilization decisions. Currently, UAV (unmanned aerial vehicles) remote sensing has played an important role in estimating the nitrogen nutrition of crops at the field scale. However, many existing methods of evaluating crop nitrogen based on UAV imaging techniques usually have used a single type of imagery such as RGB or multispectral images, seldom considering the usage of information fusion from different types of UAV imagery for assessing the crop nitrogen status. In this study, GS (Gram–Schmidt Pan Sharpening) was utilized to fuse images from two sensors of digital RGB and multispectral cameras mounted on UAV, and the specific bands of the multispectral cameras are blue, green, red, rededge and NIR. The color space transformation method, HSV (Hue-Saturation-Value), was used to separate soil background noise from crops due to the high spatial resolution of UAV images. Two methods of optimizing feature variables, the Successive Projection Algorithm (SPA) and the Competitive Adaptive Reweighted Sampling method (CARS), combined with two regularization regression algorithms, LASSO and RIDGE, were adopted to estimate the LNC, compared to the commonly used Random Forest algorithm. The results showed that: (1) the accuracy of LNC estimation using the fusion image is improved distinctly by a comparison to the original multispectral image; (2) the denoised images performed better than the original multispectral images in evaluating LNC in rice; (3) the RIDGE-SPA combined method, using SPA to select the MCARI, SAVI and OSAVI, had the best performance for LNC in rice, with an R2 of 0.76 and an RMSE of 10.33%. It can be demonstrated that the information fusion of multiple-sensor imagery from UAV coupling with the methods of optimizing feature variables can estimate the rice LNC more effectively, which can also provide a reference for guiding the decision making of fertilization in rice fields." @default.
- W4319084067 created "2023-02-04" @default.
- W4319084067 creator A5011668917 @default.
- W4319084067 creator A5020713851 @default.
- W4319084067 creator A5026358256 @default.
- W4319084067 creator A5032584289 @default.
- W4319084067 creator A5035907827 @default.
- W4319084067 creator A5045604605 @default.
- W4319084067 creator A5057558937 @default.
- W4319084067 creator A5062570352 @default.
- W4319084067 creator A5069841884 @default.
- W4319084067 creator A5070651286 @default.
- W4319084067 creator A5076779095 @default.
- W4319084067 creator A5076942238 @default.
- W4319084067 creator A5079156452 @default.
- W4319084067 date "2023-02-03" @default.
- W4319084067 modified "2023-09-30" @default.
- W4319084067 title "Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV" @default.
- W4319084067 cites W1964969432 @default.
- W4319084067 cites W1982755765 @default.
- W4319084067 cites W1989179819 @default.
- W4319084067 cites W2000613913 @default.
- W4319084067 cites W2025967407 @default.
- W4319084067 cites W2036259807 @default.
- W4319084067 cites W2064013109 @default.
- W4319084067 cites W2087047858 @default.
- W4319084067 cites W2089441588 @default.
- W4319084067 cites W2089464686 @default.
- W4319084067 cites W2094677081 @default.
- W4319084067 cites W2097018019 @default.
- W4319084067 cites W2099688984 @default.
- W4319084067 cites W2111947859 @default.
- W4319084067 cites W2125459357 @default.
- W4319084067 cites W2159263823 @default.
- W4319084067 cites W2161815745 @default.
- W4319084067 cites W2163410149 @default.
- W4319084067 cites W2201688320 @default.
- W4319084067 cites W2332208325 @default.
- W4319084067 cites W2475698673 @default.
- W4319084067 cites W2569479441 @default.
- W4319084067 cites W2755734574 @default.
- W4319084067 cites W2760888277 @default.
- W4319084067 cites W2804616917 @default.
- W4319084067 cites W2806325719 @default.
- W4319084067 cites W2886759672 @default.
- W4319084067 cites W2895994027 @default.
- W4319084067 cites W2914390555 @default.
- W4319084067 cites W2914965988 @default.
- W4319084067 cites W2916905464 @default.
- W4319084067 cites W2937578908 @default.
- W4319084067 cites W2950334518 @default.
- W4319084067 cites W2969790438 @default.
- W4319084067 cites W2970686488 @default.
- W4319084067 cites W2996062047 @default.
- W4319084067 cites W3007651920 @default.
- W4319084067 cites W3008712295 @default.
- W4319084067 cites W3014443006 @default.
- W4319084067 cites W3038890942 @default.
- W4319084067 cites W3092817527 @default.
- W4319084067 cites W3098958405 @default.
- W4319084067 cites W3105571753 @default.
- W4319084067 cites W3113291402 @default.
- W4319084067 cites W3117450682 @default.
- W4319084067 cites W3123685232 @default.
- W4319084067 cites W3128822263 @default.
- W4319084067 cites W3135871359 @default.
- W4319084067 cites W3139145455 @default.
- W4319084067 cites W3157671282 @default.
- W4319084067 cites W3176683426 @default.
- W4319084067 cites W3189992775 @default.
- W4319084067 cites W3194174017 @default.
- W4319084067 cites W3198159648 @default.
- W4319084067 cites W3202272562 @default.
- W4319084067 cites W3208184630 @default.
- W4319084067 cites W3211745207 @default.
- W4319084067 cites W3213115083 @default.
- W4319084067 cites W4206617120 @default.
- W4319084067 cites W4308105857 @default.
- W4319084067 cites W48839202 @default.
- W4319084067 doi "https://doi.org/10.3390/rs15030854" @default.
- W4319084067 hasPublicationYear "2023" @default.
- W4319084067 type Work @default.
- W4319084067 citedByCount "10" @default.
- W4319084067 countsByYear W43190840672023 @default.
- W4319084067 crossrefType "journal-article" @default.
- W4319084067 hasAuthorship W4319084067A5011668917 @default.
- W4319084067 hasAuthorship W4319084067A5020713851 @default.
- W4319084067 hasAuthorship W4319084067A5026358256 @default.
- W4319084067 hasAuthorship W4319084067A5032584289 @default.
- W4319084067 hasAuthorship W4319084067A5035907827 @default.
- W4319084067 hasAuthorship W4319084067A5045604605 @default.
- W4319084067 hasAuthorship W4319084067A5057558937 @default.
- W4319084067 hasAuthorship W4319084067A5062570352 @default.
- W4319084067 hasAuthorship W4319084067A5069841884 @default.
- W4319084067 hasAuthorship W4319084067A5070651286 @default.
- W4319084067 hasAuthorship W4319084067A5076779095 @default.
- W4319084067 hasAuthorship W4319084067A5076942238 @default.
- W4319084067 hasAuthorship W4319084067A5079156452 @default.