Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319084091> ?p ?o ?g. }
- W4319084091 endingPage "217" @default.
- W4319084091 startingPage "217" @default.
- W4319084091 abstract "Based on the hypothesis that multi-corner and multi-cell structures can effectively improve energy absorption behavior, this paper designed a multi-cell circumferentially corrugated tube (MCCT) for energy absorption. The MCCT was designed as a variable thickness form to study the influence of the materials distribution on the cross section on energy absorption. The energy absorption performance of the MCCT was investigated under impact condition with finite element simulation validated by a drop hammer test. Support vector machine, a machine learning technique, was used to predict the energy absorption performance and was further used for optimization of the MCCT. The results show that under the same mass, the MCCT with variable decreasing wall thickness (corners thicker than other regions) shows 4.81%, 30.67% and 37.70% improvement, respectively, in PCF, SEA and CFE, compared to the MCCT with variable increasing wall thickness (corners thinner than other regions). Moreover, the optimization results show that most samples in Pareto front lie in the region of tc > tm. These results all indicate that the MCCT with variable decreasing wall thickness performs better than with increasing wall thickness with regards energy absorption. In conclusion, arranging more materials in the corner element area can effectively improve the energy absorption characteristics of the thin-walled tube. This paper highlights the importance of designing thin-walled tubes as multi-corner and variable thickness configurations for energy absorption." @default.
- W4319084091 created "2023-02-04" @default.
- W4319084091 creator A5032471670 @default.
- W4319084091 creator A5051731666 @default.
- W4319084091 creator A5054721163 @default.
- W4319084091 date "2023-02-02" @default.
- W4319084091 modified "2023-10-18" @default.
- W4319084091 title "Impact Performance Prediction and Optimization of a Circumferentially Corrugated Tube with Variable Wall Thickness Using Support Vector Machine" @default.
- W4319084091 cites W1651141560 @default.
- W4319084091 cites W1871659366 @default.
- W4319084091 cites W1967826025 @default.
- W4319084091 cites W1971278352 @default.
- W4319084091 cites W1994808802 @default.
- W4319084091 cites W1997503744 @default.
- W4319084091 cites W2004785362 @default.
- W4319084091 cites W2017749509 @default.
- W4319084091 cites W2022485595 @default.
- W4319084091 cites W2023837105 @default.
- W4319084091 cites W2025157389 @default.
- W4319084091 cites W2038136698 @default.
- W4319084091 cites W2057294075 @default.
- W4319084091 cites W2077217309 @default.
- W4319084091 cites W2081729706 @default.
- W4319084091 cites W2089767919 @default.
- W4319084091 cites W2294109191 @default.
- W4319084091 cites W2513856158 @default.
- W4319084091 cites W2518066902 @default.
- W4319084091 cites W2518825602 @default.
- W4319084091 cites W2519191644 @default.
- W4319084091 cites W2526315946 @default.
- W4319084091 cites W2542941272 @default.
- W4319084091 cites W2551556061 @default.
- W4319084091 cites W2563608024 @default.
- W4319084091 cites W2592471902 @default.
- W4319084091 cites W2604381501 @default.
- W4319084091 cites W2621212730 @default.
- W4319084091 cites W2765870061 @default.
- W4319084091 cites W2771656307 @default.
- W4319084091 cites W2779644417 @default.
- W4319084091 cites W2791109215 @default.
- W4319084091 cites W2795898975 @default.
- W4319084091 cites W2804718274 @default.
- W4319084091 cites W2886806981 @default.
- W4319084091 cites W2901595704 @default.
- W4319084091 cites W2902027576 @default.
- W4319084091 cites W2902912200 @default.
- W4319084091 cites W2911364224 @default.
- W4319084091 cites W2911446752 @default.
- W4319084091 cites W2927553588 @default.
- W4319084091 cites W2932795834 @default.
- W4319084091 cites W2944065730 @default.
- W4319084091 cites W2953074056 @default.
- W4319084091 cites W2969383826 @default.
- W4319084091 cites W2970955771 @default.
- W4319084091 cites W2972272556 @default.
- W4319084091 cites W2976395332 @default.
- W4319084091 cites W2977970833 @default.
- W4319084091 cites W2977999833 @default.
- W4319084091 cites W2979896295 @default.
- W4319084091 cites W3000022715 @default.
- W4319084091 cites W3010335229 @default.
- W4319084091 cites W3010489979 @default.
- W4319084091 cites W3020834419 @default.
- W4319084091 cites W3081124016 @default.
- W4319084091 cites W3081867666 @default.
- W4319084091 cites W3082122398 @default.
- W4319084091 cites W3089256683 @default.
- W4319084091 cites W3110681358 @default.
- W4319084091 cites W3135055309 @default.
- W4319084091 cites W3139258787 @default.
- W4319084091 cites W847638548 @default.
- W4319084091 cites W921397112 @default.
- W4319084091 doi "https://doi.org/10.3390/machines11020217" @default.
- W4319084091 hasPublicationYear "2023" @default.
- W4319084091 type Work @default.
- W4319084091 citedByCount "1" @default.
- W4319084091 crossrefType "journal-article" @default.
- W4319084091 hasAuthorship W4319084091A5032471670 @default.
- W4319084091 hasAuthorship W4319084091A5051731666 @default.
- W4319084091 hasAuthorship W4319084091A5054721163 @default.
- W4319084091 hasBestOaLocation W43190840911 @default.
- W4319084091 hasConcept C125287762 @default.
- W4319084091 hasConcept C127413603 @default.
- W4319084091 hasConcept C140793950 @default.
- W4319084091 hasConcept C159985019 @default.
- W4319084091 hasConcept C192562407 @default.
- W4319084091 hasConcept C2777551473 @default.
- W4319084091 hasConcept C2993886244 @default.
- W4319084091 hasConcept C78519656 @default.
- W4319084091 hasConcept C86803240 @default.
- W4319084091 hasConceptScore W4319084091C125287762 @default.
- W4319084091 hasConceptScore W4319084091C127413603 @default.
- W4319084091 hasConceptScore W4319084091C140793950 @default.
- W4319084091 hasConceptScore W4319084091C159985019 @default.
- W4319084091 hasConceptScore W4319084091C192562407 @default.
- W4319084091 hasConceptScore W4319084091C2777551473 @default.
- W4319084091 hasConceptScore W4319084091C2993886244 @default.
- W4319084091 hasConceptScore W4319084091C78519656 @default.