Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319158187> ?p ?o ?g. }
- W4319158187 endingPage "630" @default.
- W4319158187 startingPage "613" @default.
- W4319158187 abstract "In order to accurately predict soil properties, various machine learning (ML) approaches and hybrid models constructed by integrating ML into regression kriging framework were used to predict and map arable land topsoil pH in Henan province, central China. Random Forest (RF), Cubist (Cu), Support vector machine (SVM), Artificial neural network (ANN), Multiple Linear Regression (MLR), Classification and Regression Trees (CART) and their hybrid models were compared for pH accuracy prediction. Among all standalone ML models, RF had the best predictive performance, in terms of the metrics employed in this study, followed by Cu, and CART was the worst. Compared with their ML counterparts, hybrid models could improve the accuracy of topsoil pH prediction to various extents. The accuracy improvement of the hybrid models constructed based on the simple ML was much greater than that based on the complex ensemble ML. Except for ANNK, there was no significant difference between different hybrid models in the predicted results of topsoil pH. The outputs from the best predictive models showed that weak acidic soils and weak alkaline soils were the dominant arable soils in the study region, accounting for more than 30% and more than 50% of the total arable land area respectively, the topsoil pH of arable land in the north of the study area is generally higher than that in the south. Boruta variable selection revealed that altitude, climatic covariates closely related to soil moisture availability and some soil properties were the most critical factors affecting and controlling the topsoil pH of arable land. This article is protected by copyright. All rights reserved" @default.
- W4319158187 created "2023-02-04" @default.
- W4319158187 creator A5009150062 @default.
- W4319158187 creator A5010479652 @default.
- W4319158187 creator A5025046851 @default.
- W4319158187 creator A5039057808 @default.
- W4319158187 creator A5054400812 @default.
- W4319158187 creator A5055397380 @default.
- W4319158187 creator A5084043598 @default.
- W4319158187 creator A5088482310 @default.
- W4319158187 date "2023-05-01" @default.
- W4319158187 modified "2023-09-30" @default.
- W4319158187 title "Using a variety of machine learning approaches to predict and map topsoil pH of arable land on a regional scale" @default.
- W4319158187 cites W1058055990 @default.
- W4319158187 cites W1513618424 @default.
- W4319158187 cites W1700449338 @default.
- W4319158187 cites W1971824428 @default.
- W4319158187 cites W1994645958 @default.
- W4319158187 cites W2033275656 @default.
- W4319158187 cites W2039660802 @default.
- W4319158187 cites W2054325787 @default.
- W4319158187 cites W2063843296 @default.
- W4319158187 cites W2073103388 @default.
- W4319158187 cites W2079042300 @default.
- W4319158187 cites W2119479037 @default.
- W4319158187 cites W2142405095 @default.
- W4319158187 cites W2144064225 @default.
- W4319158187 cites W2146738048 @default.
- W4319158187 cites W2148987972 @default.
- W4319158187 cites W2149331943 @default.
- W4319158187 cites W2155544089 @default.
- W4319158187 cites W2156665896 @default.
- W4319158187 cites W2186294614 @default.
- W4319158187 cites W2290606251 @default.
- W4319158187 cites W2295776121 @default.
- W4319158187 cites W2308925226 @default.
- W4319158187 cites W2567805992 @default.
- W4319158187 cites W2602718975 @default.
- W4319158187 cites W2608720956 @default.
- W4319158187 cites W2625696751 @default.
- W4319158187 cites W2741038359 @default.
- W4319158187 cites W2742602696 @default.
- W4319158187 cites W2766810845 @default.
- W4319158187 cites W2766843720 @default.
- W4319158187 cites W2767801680 @default.
- W4319158187 cites W2790860706 @default.
- W4319158187 cites W2798064106 @default.
- W4319158187 cites W2801263672 @default.
- W4319158187 cites W2892307361 @default.
- W4319158187 cites W2893301845 @default.
- W4319158187 cites W2900600890 @default.
- W4319158187 cites W2908031888 @default.
- W4319158187 cites W2909736607 @default.
- W4319158187 cites W2911920745 @default.
- W4319158187 cites W2911964244 @default.
- W4319158187 cites W2914965248 @default.
- W4319158187 cites W2946939168 @default.
- W4319158187 cites W2953121833 @default.
- W4319158187 cites W2984096509 @default.
- W4319158187 cites W2989903068 @default.
- W4319158187 cites W2993438163 @default.
- W4319158187 cites W2994652626 @default.
- W4319158187 cites W2995150843 @default.
- W4319158187 cites W3004538792 @default.
- W4319158187 cites W3004557263 @default.
- W4319158187 cites W3004914002 @default.
- W4319158187 cites W3008104495 @default.
- W4319158187 cites W3010051419 @default.
- W4319158187 cites W3012271261 @default.
- W4319158187 cites W3023189793 @default.
- W4319158187 cites W3029887509 @default.
- W4319158187 cites W3031389171 @default.
- W4319158187 cites W3037118468 @default.
- W4319158187 cites W3047903561 @default.
- W4319158187 cites W3086056576 @default.
- W4319158187 cites W4289236186 @default.
- W4319158187 cites W92141931 @default.
- W4319158187 cites W2529976566 @default.
- W4319158187 doi "https://doi.org/10.1002/saj2.20525" @default.
- W4319158187 hasPublicationYear "2023" @default.
- W4319158187 type Work @default.
- W4319158187 citedByCount "0" @default.
- W4319158187 crossrefType "journal-article" @default.
- W4319158187 hasAuthorship W4319158187A5009150062 @default.
- W4319158187 hasAuthorship W4319158187A5010479652 @default.
- W4319158187 hasAuthorship W4319158187A5025046851 @default.
- W4319158187 hasAuthorship W4319158187A5039057808 @default.
- W4319158187 hasAuthorship W4319158187A5054400812 @default.
- W4319158187 hasAuthorship W4319158187A5055397380 @default.
- W4319158187 hasAuthorship W4319158187A5084043598 @default.
- W4319158187 hasAuthorship W4319158187A5088482310 @default.
- W4319158187 hasConcept C105795698 @default.
- W4319158187 hasConcept C118518473 @default.
- W4319158187 hasConcept C119857082 @default.
- W4319158187 hasConcept C12267149 @default.
- W4319158187 hasConcept C127413603 @default.
- W4319158187 hasConcept C159390177 @default.
- W4319158187 hasConcept C159750122 @default.