Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319162007> ?p ?o ?g. }
- W4319162007 abstract "Purpose Deep learning-based denoising is promising for myocardial perfusion (MP) SPECT. However, conventional convolutional neural network (CNN)-based methods use fixed-sized convolutional kernels to convolute one region within the receptive field at a time, which would be ineffective for learning the feature dependencies across large regions. The attention mechanism (Att) is able to learn the relationships between the local receptive field and other voxels in the image. In this study, we propose a 3D attention-guided generative adversarial network (AttGAN) for denoising fast MP-SPECT images. Methods Fifty patients who underwent 1184 MBq 99m Tc-sestamibi stress SPECT/CT scan were retrospectively recruited. Sixty projections were acquired over 180° and the acquisition time was 10 s/view for the full time (FT) mode. Fast MP-SPECT projection images (1 s to 7 s) were generated from the FT list mode data. We further incorporated binary patient defect information (0 = without defect, 1 = with defect) into AttGAN (AttGAN-def). AttGAN, AttGAN-def, cGAN, and Unet were implemented using Tensorflow with the Adam optimizer running up to 400 epochs. FT and fast MP-SPECT projection pairs of 35 patients were used for training the networks for each acquisition time, while 5 and 10 patients were applied for validation and testing. Five-fold cross-validation was performed and data for all 50 patients were tested. Voxel-based error indices, joint histogram, linear regression, and perfusion defect size (PDS) were analyzed. Results All quantitative indices of AttGAN-based networks are superior to cGAN and Unet on all acquisition time images. AttGAN-def further improves AttGAN performance. The mean absolute error of PDS by AttcGAN-def was 1.60 on acquisition time of 1 s/prj, as compared to 2.36, 2.76, and 3.02 by AttGAN, cGAN, and Unet. Conclusion Denoising based on AttGAN is superior to conventional CNN-based networks for MP-SPECT." @default.
- W4319162007 created "2023-02-04" @default.
- W4319162007 creator A5018448173 @default.
- W4319162007 creator A5022017027 @default.
- W4319162007 creator A5028754746 @default.
- W4319162007 creator A5033148124 @default.
- W4319162007 creator A5057832933 @default.
- W4319162007 creator A5070575632 @default.
- W4319162007 creator A5077196517 @default.
- W4319162007 date "2023-02-03" @default.
- W4319162007 modified "2023-10-02" @default.
- W4319162007 title "Fast myocardial perfusion SPECT denoising using an attention-guided generative adversarial network" @default.
- W4319162007 cites W1776875130 @default.
- W4319162007 cites W2064419177 @default.
- W4319162007 cites W2081998696 @default.
- W4319162007 cites W2087243262 @default.
- W4319162007 cites W2089172939 @default.
- W4319162007 cites W2165744202 @default.
- W4319162007 cites W2402495445 @default.
- W4319162007 cites W2567309423 @default.
- W4319162007 cites W2598391690 @default.
- W4319162007 cites W2789588857 @default.
- W4319162007 cites W2887729441 @default.
- W4319162007 cites W2888358068 @default.
- W4319162007 cites W2898241136 @default.
- W4319162007 cites W2912204292 @default.
- W4319162007 cites W2914901050 @default.
- W4319162007 cites W2963073614 @default.
- W4319162007 cites W3002137088 @default.
- W4319162007 cites W3010675436 @default.
- W4319162007 cites W3019885855 @default.
- W4319162007 cites W3040717749 @default.
- W4319162007 cites W3081372994 @default.
- W4319162007 cites W3091755792 @default.
- W4319162007 cites W3095504049 @default.
- W4319162007 cites W3165356463 @default.
- W4319162007 cites W3186670325 @default.
- W4319162007 cites W3212863100 @default.
- W4319162007 cites W4224324059 @default.
- W4319162007 cites W4282821860 @default.
- W4319162007 cites W4283836449 @default.
- W4319162007 cites W4284962585 @default.
- W4319162007 cites W4293804742 @default.
- W4319162007 doi "https://doi.org/10.3389/fmed.2023.1083413" @default.
- W4319162007 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36817784" @default.
- W4319162007 hasPublicationYear "2023" @default.
- W4319162007 type Work @default.
- W4319162007 citedByCount "0" @default.
- W4319162007 crossrefType "journal-article" @default.
- W4319162007 hasAuthorship W4319162007A5018448173 @default.
- W4319162007 hasAuthorship W4319162007A5022017027 @default.
- W4319162007 hasAuthorship W4319162007A5028754746 @default.
- W4319162007 hasAuthorship W4319162007A5033148124 @default.
- W4319162007 hasAuthorship W4319162007A5057832933 @default.
- W4319162007 hasAuthorship W4319162007A5070575632 @default.
- W4319162007 hasAuthorship W4319162007A5077196517 @default.
- W4319162007 hasBestOaLocation W43191620071 @default.
- W4319162007 hasConcept C108583219 @default.
- W4319162007 hasConcept C11413529 @default.
- W4319162007 hasConcept C138885662 @default.
- W4319162007 hasConcept C153180895 @default.
- W4319162007 hasConcept C154945302 @default.
- W4319162007 hasConcept C163294075 @default.
- W4319162007 hasConcept C2776401178 @default.
- W4319162007 hasConcept C2989005 @default.
- W4319162007 hasConcept C31972630 @default.
- W4319162007 hasConcept C41008148 @default.
- W4319162007 hasConcept C41895202 @default.
- W4319162007 hasConcept C54170458 @default.
- W4319162007 hasConcept C57493831 @default.
- W4319162007 hasConcept C71924100 @default.
- W4319162007 hasConcept C81363708 @default.
- W4319162007 hasConceptScore W4319162007C108583219 @default.
- W4319162007 hasConceptScore W4319162007C11413529 @default.
- W4319162007 hasConceptScore W4319162007C138885662 @default.
- W4319162007 hasConceptScore W4319162007C153180895 @default.
- W4319162007 hasConceptScore W4319162007C154945302 @default.
- W4319162007 hasConceptScore W4319162007C163294075 @default.
- W4319162007 hasConceptScore W4319162007C2776401178 @default.
- W4319162007 hasConceptScore W4319162007C2989005 @default.
- W4319162007 hasConceptScore W4319162007C31972630 @default.
- W4319162007 hasConceptScore W4319162007C41008148 @default.
- W4319162007 hasConceptScore W4319162007C41895202 @default.
- W4319162007 hasConceptScore W4319162007C54170458 @default.
- W4319162007 hasConceptScore W4319162007C57493831 @default.
- W4319162007 hasConceptScore W4319162007C71924100 @default.
- W4319162007 hasConceptScore W4319162007C81363708 @default.
- W4319162007 hasLocation W43191620071 @default.
- W4319162007 hasLocation W43191620072 @default.
- W4319162007 hasLocation W43191620073 @default.
- W4319162007 hasOpenAccess W4319162007 @default.
- W4319162007 hasPrimaryLocation W43191620071 @default.
- W4319162007 hasRelatedWork W2731899572 @default.
- W4319162007 hasRelatedWork W2999805992 @default.
- W4319162007 hasRelatedWork W3011074480 @default.
- W4319162007 hasRelatedWork W3116150086 @default.
- W4319162007 hasRelatedWork W3133861977 @default.
- W4319162007 hasRelatedWork W3192840557 @default.
- W4319162007 hasRelatedWork W4200173597 @default.
- W4319162007 hasRelatedWork W4291897433 @default.