Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319163863> ?p ?o ?g. }
- W4319163863 endingPage "104644" @default.
- W4319163863 startingPage "104644" @default.
- W4319163863 abstract "The study of EEG signals is of great significance for the diagnosis and prevention of brain disease. Most of the previous studies are based on the binary classification of nonictal and ictal EEG signals, and there are few studies on the detailed division of EEG signals. In this paper, in addition to the binary classification of EEG signals, the multiclassification of EEG signals is also studied. An EEG signals recognition framework based on improved variational mode decomposition (VMD) and deep forest is proposed. Firstly, the L1 penalty term is introduced into the variational problem of VMD to improve the Tikhonov regularization term. The improved VMD algorithm is used to decompose the original signal. Second, a weighted minimum redundancy maximum relevance criterion is constructed for feature selection. Finally, a deep forest model is built to classify EEG signals. The feasibility of the proposed method is verified by EEG data from Bonn University and the Centre for Neurology and Sleep, Hauz Khas, New Delhi. The experimental results are compared with the traditional machine learning methods and the existing methods. Experimental results show that this method can recognize epileptic EEG signals effectively." @default.
- W4319163863 created "2023-02-04" @default.
- W4319163863 creator A5037556456 @default.
- W4319163863 creator A5054496371 @default.
- W4319163863 creator A5070855525 @default.
- W4319163863 creator A5071273868 @default.
- W4319163863 creator A5085820569 @default.
- W4319163863 date "2023-05-01" @default.
- W4319163863 modified "2023-10-17" @default.
- W4319163863 title "EEG signal classification based on improved variational mode decomposition and deep forest" @default.
- W4319163863 cites W1996183177 @default.
- W4319163863 cites W2000982976 @default.
- W4319163863 cites W2053744708 @default.
- W4319163863 cites W2111072639 @default.
- W4319163863 cites W2120390927 @default.
- W4319163863 cites W2122825543 @default.
- W4319163863 cites W2154053567 @default.
- W4319163863 cites W2258245936 @default.
- W4319163863 cites W2292649956 @default.
- W4319163863 cites W2332655658 @default.
- W4319163863 cites W2419542619 @default.
- W4319163863 cites W2531918295 @default.
- W4319163863 cites W2586604787 @default.
- W4319163863 cites W2592340788 @default.
- W4319163863 cites W2607594748 @default.
- W4319163863 cites W2759483166 @default.
- W4319163863 cites W2761266324 @default.
- W4319163863 cites W2790950056 @default.
- W4319163863 cites W2795145540 @default.
- W4319163863 cites W2885516027 @default.
- W4319163863 cites W2885805158 @default.
- W4319163863 cites W2898291782 @default.
- W4319163863 cites W2899459625 @default.
- W4319163863 cites W2901262261 @default.
- W4319163863 cites W2911969890 @default.
- W4319163863 cites W2954214015 @default.
- W4319163863 cites W2966302864 @default.
- W4319163863 cites W2985003680 @default.
- W4319163863 cites W2997078891 @default.
- W4319163863 cites W2999469226 @default.
- W4319163863 cites W3031192175 @default.
- W4319163863 cites W3035471470 @default.
- W4319163863 cites W3038583522 @default.
- W4319163863 cites W3090517981 @default.
- W4319163863 cites W3093630321 @default.
- W4319163863 cites W3109902604 @default.
- W4319163863 cites W3213666731 @default.
- W4319163863 cites W4200184869 @default.
- W4319163863 doi "https://doi.org/10.1016/j.bspc.2023.104644" @default.
- W4319163863 hasPublicationYear "2023" @default.
- W4319163863 type Work @default.
- W4319163863 citedByCount "0" @default.
- W4319163863 crossrefType "journal-article" @default.
- W4319163863 hasAuthorship W4319163863A5037556456 @default.
- W4319163863 hasAuthorship W4319163863A5054496371 @default.
- W4319163863 hasAuthorship W4319163863A5070855525 @default.
- W4319163863 hasAuthorship W4319163863A5071273868 @default.
- W4319163863 hasAuthorship W4319163863A5085820569 @default.
- W4319163863 hasConcept C118552586 @default.
- W4319163863 hasConcept C12267149 @default.
- W4319163863 hasConcept C134306372 @default.
- W4319163863 hasConcept C135252773 @default.
- W4319163863 hasConcept C152442038 @default.
- W4319163863 hasConcept C153180895 @default.
- W4319163863 hasConcept C154945302 @default.
- W4319163863 hasConcept C15744967 @default.
- W4319163863 hasConcept C199360897 @default.
- W4319163863 hasConcept C2776135515 @default.
- W4319163863 hasConcept C2779843651 @default.
- W4319163863 hasConcept C28490314 @default.
- W4319163863 hasConcept C33923547 @default.
- W4319163863 hasConcept C41008148 @default.
- W4319163863 hasConcept C522805319 @default.
- W4319163863 hasConcept C66905080 @default.
- W4319163863 hasConceptScore W4319163863C118552586 @default.
- W4319163863 hasConceptScore W4319163863C12267149 @default.
- W4319163863 hasConceptScore W4319163863C134306372 @default.
- W4319163863 hasConceptScore W4319163863C135252773 @default.
- W4319163863 hasConceptScore W4319163863C152442038 @default.
- W4319163863 hasConceptScore W4319163863C153180895 @default.
- W4319163863 hasConceptScore W4319163863C154945302 @default.
- W4319163863 hasConceptScore W4319163863C15744967 @default.
- W4319163863 hasConceptScore W4319163863C199360897 @default.
- W4319163863 hasConceptScore W4319163863C2776135515 @default.
- W4319163863 hasConceptScore W4319163863C2779843651 @default.
- W4319163863 hasConceptScore W4319163863C28490314 @default.
- W4319163863 hasConceptScore W4319163863C33923547 @default.
- W4319163863 hasConceptScore W4319163863C41008148 @default.
- W4319163863 hasConceptScore W4319163863C522805319 @default.
- W4319163863 hasConceptScore W4319163863C66905080 @default.
- W4319163863 hasFunder F4320321001 @default.
- W4319163863 hasFunder F4320326270 @default.
- W4319163863 hasFunder F4320327282 @default.
- W4319163863 hasLocation W43191638631 @default.
- W4319163863 hasOpenAccess W4319163863 @default.
- W4319163863 hasPrimaryLocation W43191638631 @default.
- W4319163863 hasRelatedWork W2050033254 @default.
- W4319163863 hasRelatedWork W2057439054 @default.