Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319166254> ?p ?o ?g. }
- W4319166254 endingPage "110078" @default.
- W4319166254 startingPage "110078" @default.
- W4319166254 abstract "Cancer prediction based on microarray data can facilitate the molecular exploration of cancers, thus building more accurate cancer prediction models is essential. This study focuses on a deep learning-based cancer prediction model. However, using a deep neural network to predict cancer is a difficult task due to the complexity of the underlying biological patterns and high dimension low sample size (HDLSS) of microarray data, which could bring about over-fitting and large training gradient variance. Therefore, a tree-enhanced deep adaptive network (TEDAN) is proposed to address these issues. Firstly, we employ the idea of the ensemble tree as a feature transformation method to alleviate the over-fitting problem, which generates a feature with a lower dimension and a more discriminative pattern. Secondly, a deep adaptive network (DAN) based on a self-attention mechanism is proposed to model the underlying biological interaction between different genes. Thirdly, a low sample size training (LSST) method is proposed to further reduce the large training gradient variance. Experiment results on six public cancer prediction datasets demonstrate that the TEDAN outperforms other strong baseline models." @default.
- W4319166254 created "2023-02-04" @default.
- W4319166254 creator A5007220787 @default.
- W4319166254 creator A5035530096 @default.
- W4319166254 creator A5042524516 @default.
- W4319166254 date "2023-03-01" @default.
- W4319166254 modified "2023-10-16" @default.
- W4319166254 title "Tree enhanced deep adaptive network for cancer prediction with high dimension low sample size microarray data" @default.
- W4319166254 cites W1985900816 @default.
- W4319166254 cites W1988512338 @default.
- W4319166254 cites W1989540221 @default.
- W4319166254 cites W1993528080 @default.
- W4319166254 cites W2014915963 @default.
- W4319166254 cites W2091947792 @default.
- W4319166254 cites W2093396371 @default.
- W4319166254 cites W2109363337 @default.
- W4319166254 cites W2122210511 @default.
- W4319166254 cites W2129151899 @default.
- W4319166254 cites W2152258825 @default.
- W4319166254 cites W2157752701 @default.
- W4319166254 cites W2158497151 @default.
- W4319166254 cites W2221443338 @default.
- W4319166254 cites W2253609413 @default.
- W4319166254 cites W2486398192 @default.
- W4319166254 cites W2509565210 @default.
- W4319166254 cites W2763523016 @default.
- W4319166254 cites W2789440825 @default.
- W4319166254 cites W2790106913 @default.
- W4319166254 cites W2808601429 @default.
- W4319166254 cites W2809158771 @default.
- W4319166254 cites W2895084243 @default.
- W4319166254 cites W2912582129 @default.
- W4319166254 cites W2916041164 @default.
- W4319166254 cites W2919115771 @default.
- W4319166254 cites W2981792167 @default.
- W4319166254 cites W3003617865 @default.
- W4319166254 cites W3013462789 @default.
- W4319166254 cites W3034167140 @default.
- W4319166254 cites W3041911350 @default.
- W4319166254 cites W3072536519 @default.
- W4319166254 cites W3084282168 @default.
- W4319166254 cites W3088624649 @default.
- W4319166254 cites W3099905444 @default.
- W4319166254 cites W3126122061 @default.
- W4319166254 cites W3132537781 @default.
- W4319166254 cites W4283072979 @default.
- W4319166254 cites W4296886862 @default.
- W4319166254 cites W579581331 @default.
- W4319166254 doi "https://doi.org/10.1016/j.asoc.2023.110078" @default.
- W4319166254 hasPublicationYear "2023" @default.
- W4319166254 type Work @default.
- W4319166254 citedByCount "1" @default.
- W4319166254 countsByYear W43191662542023 @default.
- W4319166254 crossrefType "journal-article" @default.
- W4319166254 hasAuthorship W4319166254A5007220787 @default.
- W4319166254 hasAuthorship W4319166254A5035530096 @default.
- W4319166254 hasAuthorship W4319166254A5042524516 @default.
- W4319166254 hasConcept C105795698 @default.
- W4319166254 hasConcept C108583219 @default.
- W4319166254 hasConcept C113174947 @default.
- W4319166254 hasConcept C119857082 @default.
- W4319166254 hasConcept C121955636 @default.
- W4319166254 hasConcept C124101348 @default.
- W4319166254 hasConcept C129848803 @default.
- W4319166254 hasConcept C134306372 @default.
- W4319166254 hasConcept C138885662 @default.
- W4319166254 hasConcept C144133560 @default.
- W4319166254 hasConcept C153180895 @default.
- W4319166254 hasConcept C154945302 @default.
- W4319166254 hasConcept C196083921 @default.
- W4319166254 hasConcept C202444582 @default.
- W4319166254 hasConcept C2776401178 @default.
- W4319166254 hasConcept C33676613 @default.
- W4319166254 hasConcept C33923547 @default.
- W4319166254 hasConcept C41008148 @default.
- W4319166254 hasConcept C41895202 @default.
- W4319166254 hasConcept C50644808 @default.
- W4319166254 hasConcept C97931131 @default.
- W4319166254 hasConceptScore W4319166254C105795698 @default.
- W4319166254 hasConceptScore W4319166254C108583219 @default.
- W4319166254 hasConceptScore W4319166254C113174947 @default.
- W4319166254 hasConceptScore W4319166254C119857082 @default.
- W4319166254 hasConceptScore W4319166254C121955636 @default.
- W4319166254 hasConceptScore W4319166254C124101348 @default.
- W4319166254 hasConceptScore W4319166254C129848803 @default.
- W4319166254 hasConceptScore W4319166254C134306372 @default.
- W4319166254 hasConceptScore W4319166254C138885662 @default.
- W4319166254 hasConceptScore W4319166254C144133560 @default.
- W4319166254 hasConceptScore W4319166254C153180895 @default.
- W4319166254 hasConceptScore W4319166254C154945302 @default.
- W4319166254 hasConceptScore W4319166254C196083921 @default.
- W4319166254 hasConceptScore W4319166254C202444582 @default.
- W4319166254 hasConceptScore W4319166254C2776401178 @default.
- W4319166254 hasConceptScore W4319166254C33676613 @default.
- W4319166254 hasConceptScore W4319166254C33923547 @default.
- W4319166254 hasConceptScore W4319166254C41008148 @default.
- W4319166254 hasConceptScore W4319166254C41895202 @default.
- W4319166254 hasConceptScore W4319166254C50644808 @default.