Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319216043> ?p ?o ?g. }
- W4319216043 abstract "Abstract Objectives To optimise planning of public health services, the impact of high-cost users needs to be considered. However, most of the existing statistical models for costs do not include many clinical and social variables from administrative data that are associated with elevated health care resource use, and are increasingly available. This study aimed to use machine learning approaches and big data to predict high-cost users among people with cardiovascular disease (CVD). Methods We used nationally representative linked datasets in New Zealand to predict CVD prevalent cases with the most expensive cost belonging to the top quintiles by cost. We compared the performance of four popular machine learning models (L1-regularised logistic regression, classification trees, k-nearest neighbourhood (KNN) and random forest) with the traditional regression models. Results The machine learning models had far better accuracy in predicting high health-cost users compared with the logistic models. The harmony score F1 (combining sensitivity and positive predictive value) of the machine learning models ranged from 30.6% to 41.2% (compared with 8.6–9.1% for the logistic models). Previous health costs, income, age, chronic health conditions, deprivation, and receiving a social security benefit were among the most important predictors of the CVD high-cost users. Conclusions This study provides additional evidence that machine learning can be used as a tool together with big data in health economics for identification of new risk factors and prediction of high-cost users with CVD. As such, machine learning may potentially assist with health services planning and preventive measures to improve population health while potentially saving healthcare costs." @default.
- W4319216043 created "2023-02-05" @default.
- W4319216043 creator A5029668548 @default.
- W4319216043 creator A5047278425 @default.
- W4319216043 creator A5067471673 @default.
- W4319216043 creator A5087235620 @default.
- W4319216043 creator A5091142923 @default.
- W4319216043 date "2023-02-04" @default.
- W4319216043 modified "2023-10-18" @default.
- W4319216043 title "Predicting high health-cost users among people with cardiovascular disease using machine learning and nationwide linked social administrative datasets" @default.
- W4319216043 cites W1593704843 @default.
- W4319216043 cites W1992146749 @default.
- W4319216043 cites W2033609349 @default.
- W4319216043 cites W2087949038 @default.
- W4319216043 cites W2095649738 @default.
- W4319216043 cites W2136381875 @default.
- W4319216043 cites W2155419203 @default.
- W4319216043 cites W2220118211 @default.
- W4319216043 cites W2228876158 @default.
- W4319216043 cites W2239135493 @default.
- W4319216043 cites W2261722226 @default.
- W4319216043 cites W2335787940 @default.
- W4319216043 cites W2488810890 @default.
- W4319216043 cites W2596627175 @default.
- W4319216043 cites W2600399649 @default.
- W4319216043 cites W2610886376 @default.
- W4319216043 cites W2614986146 @default.
- W4319216043 cites W2766944283 @default.
- W4319216043 cites W2768453858 @default.
- W4319216043 cites W2780542440 @default.
- W4319216043 cites W2781122472 @default.
- W4319216043 cites W2789894922 @default.
- W4319216043 cites W2794910998 @default.
- W4319216043 cites W2799462148 @default.
- W4319216043 cites W2804246163 @default.
- W4319216043 cites W2810708119 @default.
- W4319216043 cites W2884128841 @default.
- W4319216043 cites W2889502664 @default.
- W4319216043 cites W2892263409 @default.
- W4319216043 cites W2902633481 @default.
- W4319216043 cites W2909452008 @default.
- W4319216043 cites W2913997948 @default.
- W4319216043 cites W2922512552 @default.
- W4319216043 cites W2922705140 @default.
- W4319216043 cites W2929849021 @default.
- W4319216043 cites W2946480723 @default.
- W4319216043 cites W2950761565 @default.
- W4319216043 cites W2957103736 @default.
- W4319216043 cites W2964099165 @default.
- W4319216043 cites W3001522162 @default.
- W4319216043 cites W3005060710 @default.
- W4319216043 cites W3038917140 @default.
- W4319216043 cites W3092861045 @default.
- W4319216043 cites W3093018311 @default.
- W4319216043 cites W3111688715 @default.
- W4319216043 cites W3113178943 @default.
- W4319216043 cites W3116286104 @default.
- W4319216043 cites W3169477125 @default.
- W4319216043 cites W3211639647 @default.
- W4319216043 cites W4205391205 @default.
- W4319216043 cites W4214901921 @default.
- W4319216043 cites W4221044738 @default.
- W4319216043 cites W4250664506 @default.
- W4319216043 cites W4289878985 @default.
- W4319216043 doi "https://doi.org/10.1186/s13561-023-00422-1" @default.
- W4319216043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36738348" @default.
- W4319216043 hasPublicationYear "2023" @default.
- W4319216043 type Work @default.
- W4319216043 citedByCount "0" @default.
- W4319216043 crossrefType "journal-article" @default.
- W4319216043 hasAuthorship W4319216043A5029668548 @default.
- W4319216043 hasAuthorship W4319216043A5047278425 @default.
- W4319216043 hasAuthorship W4319216043A5067471673 @default.
- W4319216043 hasAuthorship W4319216043A5087235620 @default.
- W4319216043 hasAuthorship W4319216043A5091142923 @default.
- W4319216043 hasBestOaLocation W43192160431 @default.
- W4319216043 hasConcept C119857082 @default.
- W4319216043 hasConcept C138816342 @default.
- W4319216043 hasConcept C151956035 @default.
- W4319216043 hasConcept C154945302 @default.
- W4319216043 hasConcept C159110408 @default.
- W4319216043 hasConcept C160735492 @default.
- W4319216043 hasConcept C162324750 @default.
- W4319216043 hasConcept C169258074 @default.
- W4319216043 hasConcept C41008148 @default.
- W4319216043 hasConcept C50522688 @default.
- W4319216043 hasConcept C524218345 @default.
- W4319216043 hasConcept C71924100 @default.
- W4319216043 hasConcept C78491826 @default.
- W4319216043 hasConceptScore W4319216043C119857082 @default.
- W4319216043 hasConceptScore W4319216043C138816342 @default.
- W4319216043 hasConceptScore W4319216043C151956035 @default.
- W4319216043 hasConceptScore W4319216043C154945302 @default.
- W4319216043 hasConceptScore W4319216043C159110408 @default.
- W4319216043 hasConceptScore W4319216043C160735492 @default.
- W4319216043 hasConceptScore W4319216043C162324750 @default.
- W4319216043 hasConceptScore W4319216043C169258074 @default.
- W4319216043 hasConceptScore W4319216043C41008148 @default.
- W4319216043 hasConceptScore W4319216043C50522688 @default.
- W4319216043 hasConceptScore W4319216043C524218345 @default.