Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319216267> ?p ?o ?g. }
- W4319216267 endingPage "974" @default.
- W4319216267 startingPage "963" @default.
- W4319216267 abstract "Background Nonmass enhancement (NME) breast lesions are considered to be the leading cause of unnecessary biopsies. Diffusion‐weighted imaging (DWI) or dynamic contrast‐enhanced (DCE) sequences are typically used to differentiate between benign and malignant NMEs. It is important to know which one is more effective and reliable. Purpose To compare the diagnostic performance of DCE curves and DWI in discriminating benign and malignant NME lesions on the basis of morphologic characteristics assessment on contrast‐enhanced (CE)‐MRI images. Study Type Retrospective. Subjects A total of 180 patients with 184 lesions in the training cohort and 75 patients with 77 lesions in the validation cohort with pathological results. Field Strength/Sequence A 3.0 T/multi‐b‐value DWI ( b values = 0, 50, 1000, and 2000 sec/mm 2 ) and time‐resolved angiography with stochastic trajectories and volume‐interpolated breath‐hold examination ( TWIST‐VIBE ) sequence. Assessment In the training cohort, a diagnostic model for morphology based on the distribution and internal enhancement characteristics was first constructed. The apparent diffusion coefficient (ADC) model (ADC + morphology) and the time‐intensity curves (TIC) model (TIC + morphology) were then established using binary logistic regression with pathological results as the reference standard. Both models were compared for sensitivity, specificity, and area under the curve (AUC) in the training and the validation cohort. Statistical Tests Receiver operating characteristic (ROC) curve analysis and two‐sample t ‐tests/Mann–Whitney U‐test/Chi‐square test were performed. P < 0.05 was considered statistically significant. Results For the TIC/ADC model in the training cohort, sensitivities were 0.924/0.814, specificities were 0.615/0.615, and AUCs were 0.811 (95%, 0.727, 0.894)/0.769 (95%, 0.681, 0.856). The AUC of the TIC‐ADC combined model was significantly higher than ADC model alone, while comparable with the TIC model ( P = 0.494). In the validation cohort, the AUCs of TIC/ADC model were 0.799/0.635. Data Conclusion Based on the morphologic analyses, the performance of the TIC model was found to be superior than the ADC model for differentiating between benign and malignant NME lesions. Evidence Level 4. Technical Efficacy Stage 2." @default.
- W4319216267 created "2023-02-05" @default.
- W4319216267 creator A5003423328 @default.
- W4319216267 creator A5028116005 @default.
- W4319216267 creator A5035835041 @default.
- W4319216267 creator A5037649561 @default.
- W4319216267 creator A5068203700 @default.
- W4319216267 creator A5079305848 @default.
- W4319216267 creator A5082857859 @default.
- W4319216267 creator A5086350385 @default.
- W4319216267 creator A5087297057 @default.
- W4319216267 date "2023-02-03" @default.
- W4319216267 modified "2023-10-14" @default.
- W4319216267 title "Contrasts Between Diffusion‐Weighted Imaging and Dynamic Contrast‐Enhanced <scp>MR</scp> in Diagnosing Malignancies of Breast Nonmass Enhancement Lesions Based on Morphologic Assessment" @default.
- W4319216267 cites W1559820277 @default.
- W4319216267 cites W1834116834 @default.
- W4319216267 cites W1854291010 @default.
- W4319216267 cites W1972708431 @default.
- W4319216267 cites W1974333581 @default.
- W4319216267 cites W1985692252 @default.
- W4319216267 cites W1995618743 @default.
- W4319216267 cites W2021695977 @default.
- W4319216267 cites W2045762827 @default.
- W4319216267 cites W2056214995 @default.
- W4319216267 cites W2137298481 @default.
- W4319216267 cites W2139131806 @default.
- W4319216267 cites W2141798739 @default.
- W4319216267 cites W2413288673 @default.
- W4319216267 cites W2528833166 @default.
- W4319216267 cites W2779613043 @default.
- W4319216267 cites W2785884561 @default.
- W4319216267 cites W2795467689 @default.
- W4319216267 cites W2796198656 @default.
- W4319216267 cites W2803523976 @default.
- W4319216267 cites W2912891971 @default.
- W4319216267 cites W2965272890 @default.
- W4319216267 cites W2979521875 @default.
- W4319216267 cites W2992025766 @default.
- W4319216267 cites W3023376904 @default.
- W4319216267 cites W3029791465 @default.
- W4319216267 cites W3119003305 @default.
- W4319216267 cites W3121514822 @default.
- W4319216267 cites W3165125143 @default.
- W4319216267 doi "https://doi.org/10.1002/jmri.28600" @default.
- W4319216267 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36738118" @default.
- W4319216267 hasPublicationYear "2023" @default.
- W4319216267 type Work @default.
- W4319216267 citedByCount "1" @default.
- W4319216267 countsByYear W43192162672023 @default.
- W4319216267 crossrefType "journal-article" @default.
- W4319216267 hasAuthorship W4319216267A5003423328 @default.
- W4319216267 hasAuthorship W4319216267A5028116005 @default.
- W4319216267 hasAuthorship W4319216267A5035835041 @default.
- W4319216267 hasAuthorship W4319216267A5037649561 @default.
- W4319216267 hasAuthorship W4319216267A5068203700 @default.
- W4319216267 hasAuthorship W4319216267A5079305848 @default.
- W4319216267 hasAuthorship W4319216267A5082857859 @default.
- W4319216267 hasAuthorship W4319216267A5086350385 @default.
- W4319216267 hasAuthorship W4319216267A5087297057 @default.
- W4319216267 hasConcept C121608353 @default.
- W4319216267 hasConcept C126322002 @default.
- W4319216267 hasConcept C126838900 @default.
- W4319216267 hasConcept C12868164 @default.
- W4319216267 hasConcept C142724271 @default.
- W4319216267 hasConcept C143409427 @default.
- W4319216267 hasConcept C149550507 @default.
- W4319216267 hasConcept C151956035 @default.
- W4319216267 hasConcept C2777111374 @default.
- W4319216267 hasConcept C2780472235 @default.
- W4319216267 hasConcept C2989005 @default.
- W4319216267 hasConcept C2994142346 @default.
- W4319216267 hasConcept C41727105 @default.
- W4319216267 hasConcept C530470458 @default.
- W4319216267 hasConcept C58471807 @default.
- W4319216267 hasConcept C70816921 @default.
- W4319216267 hasConcept C71924100 @default.
- W4319216267 hasConcept C72563966 @default.
- W4319216267 hasConcept C76318530 @default.
- W4319216267 hasConceptScore W4319216267C121608353 @default.
- W4319216267 hasConceptScore W4319216267C126322002 @default.
- W4319216267 hasConceptScore W4319216267C126838900 @default.
- W4319216267 hasConceptScore W4319216267C12868164 @default.
- W4319216267 hasConceptScore W4319216267C142724271 @default.
- W4319216267 hasConceptScore W4319216267C143409427 @default.
- W4319216267 hasConceptScore W4319216267C149550507 @default.
- W4319216267 hasConceptScore W4319216267C151956035 @default.
- W4319216267 hasConceptScore W4319216267C2777111374 @default.
- W4319216267 hasConceptScore W4319216267C2780472235 @default.
- W4319216267 hasConceptScore W4319216267C2989005 @default.
- W4319216267 hasConceptScore W4319216267C2994142346 @default.
- W4319216267 hasConceptScore W4319216267C41727105 @default.
- W4319216267 hasConceptScore W4319216267C530470458 @default.
- W4319216267 hasConceptScore W4319216267C58471807 @default.
- W4319216267 hasConceptScore W4319216267C70816921 @default.
- W4319216267 hasConceptScore W4319216267C71924100 @default.
- W4319216267 hasConceptScore W4319216267C72563966 @default.
- W4319216267 hasConceptScore W4319216267C76318530 @default.
- W4319216267 hasFunder F4320321001 @default.