Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319216300> ?p ?o ?g. }
- W4319216300 endingPage "2149" @default.
- W4319216300 startingPage "2135" @default.
- W4319216300 abstract "Machine learning research into automated dementia diagnosis is becoming increasingly popular but so far has had limited clinical impact. A key challenge is building robust and generalizable models that generate decisions that can be reliably explained. Some models are designed to be inherently interpretable, whereas post hoc explainability methods can be used for other models.Here we sought to summarize the state-of-the-art of interpretable machine learning for dementia.We identified 92 studies using PubMed, Web of Science, and Scopus. Studies demonstrate promising classification performance but vary in their validation procedures and reporting standards and rely heavily on popular data sets.Future work should incorporate clinicians to validate explanation methods and make conclusive inferences about dementia-related disease pathology. Critically analyzing model explanations also requires an understanding of the interpretability methods itself. Patient-specific explanations are also required to demonstrate the benefit of interpretable machine learning in clinical practice." @default.
- W4319216300 created "2023-02-05" @default.
- W4319216300 creator A5003288277 @default.
- W4319216300 creator A5018002287 @default.
- W4319216300 creator A5064378373 @default.
- W4319216300 creator A5075868794 @default.
- W4319216300 date "2023-02-03" @default.
- W4319216300 modified "2023-10-12" @default.
- W4319216300 title "Interpretable machine learning for dementia: A systematic review" @default.
- W4319216300 cites W1787224781 @default.
- W4319216300 cites W1858759550 @default.
- W4319216300 cites W1991967321 @default.
- W4319216300 cites W2001477615 @default.
- W4319216300 cites W2037937061 @default.
- W4319216300 cites W2053074745 @default.
- W4319216300 cites W2093120878 @default.
- W4319216300 cites W2105037799 @default.
- W4319216300 cites W2122328291 @default.
- W4319216300 cites W2282821441 @default.
- W4319216300 cites W2297154078 @default.
- W4319216300 cites W2767333668 @default.
- W4319216300 cites W2803144007 @default.
- W4319216300 cites W2891503716 @default.
- W4319216300 cites W2899635607 @default.
- W4319216300 cites W2901872559 @default.
- W4319216300 cites W2906155095 @default.
- W4319216300 cites W2918556752 @default.
- W4319216300 cites W2956993163 @default.
- W4319216300 cites W2963389298 @default.
- W4319216300 cites W2964629181 @default.
- W4319216300 cites W2969595880 @default.
- W4319216300 cites W2979200397 @default.
- W4319216300 cites W2981334597 @default.
- W4319216300 cites W2981731882 @default.
- W4319216300 cites W2997907261 @default.
- W4319216300 cites W3013294478 @default.
- W4319216300 cites W3023079706 @default.
- W4319216300 cites W3029137193 @default.
- W4319216300 cites W3030973653 @default.
- W4319216300 cites W3035309915 @default.
- W4319216300 cites W3036319923 @default.
- W4319216300 cites W3090465856 @default.
- W4319216300 cites W3091348074 @default.
- W4319216300 cites W3095769488 @default.
- W4319216300 cites W3099680769 @default.
- W4319216300 cites W3111737001 @default.
- W4319216300 cites W3122625233 @default.
- W4319216300 cites W3130718864 @default.
- W4319216300 cites W3157651102 @default.
- W4319216300 cites W3159837519 @default.
- W4319216300 cites W3165523276 @default.
- W4319216300 cites W3172343328 @default.
- W4319216300 cites W3173195087 @default.
- W4319216300 cites W3176196997 @default.
- W4319216300 cites W3183221166 @default.
- W4319216300 cites W3200676672 @default.
- W4319216300 cites W3202038505 @default.
- W4319216300 cites W3211317523 @default.
- W4319216300 cites W4200274996 @default.
- W4319216300 doi "https://doi.org/10.1002/alz.12948" @default.
- W4319216300 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36735865" @default.
- W4319216300 hasPublicationYear "2023" @default.
- W4319216300 type Work @default.
- W4319216300 citedByCount "9" @default.
- W4319216300 countsByYear W43192163002023 @default.
- W4319216300 crossrefType "journal-article" @default.
- W4319216300 hasAuthorship W4319216300A5003288277 @default.
- W4319216300 hasAuthorship W4319216300A5018002287 @default.
- W4319216300 hasAuthorship W4319216300A5064378373 @default.
- W4319216300 hasAuthorship W4319216300A5075868794 @default.
- W4319216300 hasBestOaLocation W43192163002 @default.
- W4319216300 hasConcept C119857082 @default.
- W4319216300 hasConcept C142724271 @default.
- W4319216300 hasConcept C154945302 @default.
- W4319216300 hasConcept C17744445 @default.
- W4319216300 hasConcept C199539241 @default.
- W4319216300 hasConcept C2522767166 @default.
- W4319216300 hasConcept C2779134260 @default.
- W4319216300 hasConcept C2779473830 @default.
- W4319216300 hasConcept C2779483572 @default.
- W4319216300 hasConcept C2779974597 @default.
- W4319216300 hasConcept C2781067378 @default.
- W4319216300 hasConcept C41008148 @default.
- W4319216300 hasConcept C512399662 @default.
- W4319216300 hasConcept C71924100 @default.
- W4319216300 hasConcept C83867959 @default.
- W4319216300 hasConceptScore W4319216300C119857082 @default.
- W4319216300 hasConceptScore W4319216300C142724271 @default.
- W4319216300 hasConceptScore W4319216300C154945302 @default.
- W4319216300 hasConceptScore W4319216300C17744445 @default.
- W4319216300 hasConceptScore W4319216300C199539241 @default.
- W4319216300 hasConceptScore W4319216300C2522767166 @default.
- W4319216300 hasConceptScore W4319216300C2779134260 @default.
- W4319216300 hasConceptScore W4319216300C2779473830 @default.
- W4319216300 hasConceptScore W4319216300C2779483572 @default.
- W4319216300 hasConceptScore W4319216300C2779974597 @default.
- W4319216300 hasConceptScore W4319216300C2781067378 @default.
- W4319216300 hasConceptScore W4319216300C41008148 @default.