Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319216477> ?p ?o ?g. }
- W4319216477 endingPage "3510" @default.
- W4319216477 startingPage "3498" @default.
- W4319216477 abstract "Abstract Background The development of materials with tailored signal intensity in MR imaging is critically important both for the reduction of signal from non‐tissue hardware, as well as for the construction of tissue‐mimicking phantoms. Silicone‐based phantoms are becoming more popular due to their structural stability, stretchability, longer shelf life, and ease of handling, as well as for their application in dynamic imaging of physiology in motion. Moreover, silicone can be also used for the design of stretchable receive radio‐frequency (RF) coils. Purpose Fabrication of materials with tailored signal intensity for MRI requires knowledge of precise T 1 and T 2 relaxation times of the materials used. In order to increase the range of possible relaxation times, silicone materials can be doped with gadolinium (Gd). In this work, we aim to systematically evaluate relaxation properties of Gd‐doped silicone material at a broad range of Gd concentrations and at three clinically relevant magnetic field strengths (1.5 T, 3 T, and 7 T). We apply the findings for rendering silicone substrates of stretchable receive RF coils less visible in MRI. Moreover, we demonstrate early stage proof‐of‐concept applicability in tissue‐mimicking phantom development. Materials and Methods Ten samples of pure and Gd‐doped Ecoflex silicone polymer samples were prepared with various Gd volume ratios ranging from 1:5000 to 1:10, and studied using 1.5 T and 3 T clinical and 7 T preclinical scanners. T 1 and T 2 relaxation times of each sample were derived by fitting the data to Bloch signal intensity equations. A receive coil made from Gd‐doped Ecoflex silicone polymer was fabricated and evaluated in vitro at 3 T. Results With the addition of a Gd‐based contrast agent, it is possible to significantly change T 2 relaxation times of Ecoflex silicone polymer (from 213 ms to 20 ms at 1.5 T; from 135 ms to 17 ms at 3 T; and from 111.4 ms to 17.2 ms at 7 T). T 1 relaxation time is less affected by the introduction of the contrast agent (changes from 608 ms to 579 ms; from 802.5 ms to 713 ms at 3 T; from 1276 ms to 979 ms at 7 T). First results also indicate that liver, pancreas, and white matter tissues can potentially be closely mimicked using this phantom preparation technique. Gd‐doping reduces the appearance of the silicone‐based coil substrate during the MR scan by up to 81%. Conclusions Gd‐based contrast agents can be effectively used to create Ecoflex silicone polymer‐based phantoms with tailored T 2 relaxation properties. The relative low cost, ease of preparation, stretchability, mechanical stability, and long shelf life of Ecoflex silicone polymer all make it a good candidate for “MR invisible” coil development and bears promise for tissue‐mimicking phantom development applicability." @default.
- W4319216477 created "2023-02-05" @default.
- W4319216477 creator A5012900186 @default.
- W4319216477 creator A5020772769 @default.
- W4319216477 creator A5036482314 @default.
- W4319216477 creator A5038337694 @default.
- W4319216477 creator A5046413003 @default.
- W4319216477 creator A5058594692 @default.
- W4319216477 creator A5084938867 @default.
- W4319216477 creator A5088737618 @default.
- W4319216477 creator A5089152781 @default.
- W4319216477 creator A5090094220 @default.
- W4319216477 date "2023-02-14" @default.
- W4319216477 modified "2023-10-12" @default.
- W4319216477 title "Silicone‐based materials with tailored MR relaxation characteristics for use in reduced coil visibility and in tissue‐mimicking phantom design" @default.
- W4319216477 cites W1510815927 @default.
- W4319216477 cites W1969096452 @default.
- W4319216477 cites W1984701498 @default.
- W4319216477 cites W1987121090 @default.
- W4319216477 cites W2011435635 @default.
- W4319216477 cites W2018384752 @default.
- W4319216477 cites W2022514814 @default.
- W4319216477 cites W2030003406 @default.
- W4319216477 cites W2031328341 @default.
- W4319216477 cites W2038837341 @default.
- W4319216477 cites W2045970250 @default.
- W4319216477 cites W2049066910 @default.
- W4319216477 cites W2062473581 @default.
- W4319216477 cites W2065109272 @default.
- W4319216477 cites W2085470909 @default.
- W4319216477 cites W2086118747 @default.
- W4319216477 cites W2102213632 @default.
- W4319216477 cites W2110517258 @default.
- W4319216477 cites W2113316687 @default.
- W4319216477 cites W2130544939 @default.
- W4319216477 cites W2133127325 @default.
- W4319216477 cites W2263221359 @default.
- W4319216477 cites W2507707535 @default.
- W4319216477 cites W2524719417 @default.
- W4319216477 cites W2620044544 @default.
- W4319216477 cites W2793338198 @default.
- W4319216477 cites W2809530635 @default.
- W4319216477 cites W2809544506 @default.
- W4319216477 cites W2906997309 @default.
- W4319216477 cites W2909877561 @default.
- W4319216477 cites W2972457898 @default.
- W4319216477 cites W2978003861 @default.
- W4319216477 cites W2985633827 @default.
- W4319216477 cites W2995107970 @default.
- W4319216477 cites W3000059182 @default.
- W4319216477 cites W3036562107 @default.
- W4319216477 cites W3089367806 @default.
- W4319216477 cites W3092336729 @default.
- W4319216477 cites W3105873326 @default.
- W4319216477 cites W3126607867 @default.
- W4319216477 cites W3132484254 @default.
- W4319216477 cites W3163119490 @default.
- W4319216477 cites W3188055402 @default.
- W4319216477 cites W3196128797 @default.
- W4319216477 cites W3201154896 @default.
- W4319216477 cites W3203534277 @default.
- W4319216477 cites W4200553271 @default.
- W4319216477 cites W4212775887 @default.
- W4319216477 cites W4212865204 @default.
- W4319216477 cites W4320801425 @default.
- W4319216477 doi "https://doi.org/10.1002/mp.16255" @default.
- W4319216477 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36737839" @default.
- W4319216477 hasPublicationYear "2023" @default.
- W4319216477 type Work @default.
- W4319216477 citedByCount "1" @default.
- W4319216477 countsByYear W43192164772023 @default.
- W4319216477 crossrefType "journal-article" @default.
- W4319216477 hasAuthorship W4319216477A5012900186 @default.
- W4319216477 hasAuthorship W4319216477A5020772769 @default.
- W4319216477 hasAuthorship W4319216477A5036482314 @default.
- W4319216477 hasAuthorship W4319216477A5038337694 @default.
- W4319216477 hasAuthorship W4319216477A5046413003 @default.
- W4319216477 hasAuthorship W4319216477A5058594692 @default.
- W4319216477 hasAuthorship W4319216477A5084938867 @default.
- W4319216477 hasAuthorship W4319216477A5088737618 @default.
- W4319216477 hasAuthorship W4319216477A5089152781 @default.
- W4319216477 hasAuthorship W4319216477A5090094220 @default.
- W4319216477 hasBestOaLocation W43192164772 @default.
- W4319216477 hasConcept C104293457 @default.
- W4319216477 hasConcept C119599485 @default.
- W4319216477 hasConcept C121332964 @default.
- W4319216477 hasConcept C126322002 @default.
- W4319216477 hasConcept C127413603 @default.
- W4319216477 hasConcept C136229726 @default.
- W4319216477 hasConcept C159985019 @default.
- W4319216477 hasConcept C192562407 @default.
- W4319216477 hasConcept C2776029896 @default.
- W4319216477 hasConcept C2779769944 @default.
- W4319216477 hasConcept C2989005 @default.
- W4319216477 hasConcept C30403606 @default.
- W4319216477 hasConcept C46141821 @default.
- W4319216477 hasConcept C71924100 @default.
- W4319216477 hasConceptScore W4319216477C104293457 @default.