Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319222016> ?p ?o ?g. }
- W4319222016 abstract "<sec> <title>BACKGROUND</title> Normal voice production depends on the synchronized cooperation of multiple physiological systems, which makes the voice sensitive to changes. Any systematic, neurological, and aerodigestive distortion is prone to affect voice production through reduced cognitive, pulmonary, and muscular functionality. This sensitivity inspired using voice as a biomarker to examine disorders that affect the voice. Technological improvements and emerging machine learning (ML) technologies have enabled possibilities of extracting digital vocal features from the voice for automated diagnosis and monitoring systems. </sec> <sec> <title>OBJECTIVE</title> This study aims to summarize a comprehensive view of research on voice-affecting disorders that uses ML techniques for diagnosis and monitoring through voice samples where systematic conditions, nonlaryngeal aerodigestive disorders, and neurological disorders are specifically of interest. </sec> <sec> <title>METHODS</title> This systematic literature review (SLR) investigated the state of the art of voice-based diagnostic and monitoring systems with ML technologies, targeting voice-affecting disorders without direct relation to the voice box from the point of view of applied health technology. Through a comprehensive search string, studies published from 2012 to 2022 from the databases Scopus, PubMed, and Web of Science were scanned and collected for assessment. To minimize bias, retrieval of the relevant references in other studies in the field was ensured, and 2 authors assessed the collected studies. Low-quality studies were removed through a quality assessment and relevant data were extracted through summary tables for analysis. The articles were checked for similarities between author groups to prevent cumulative redundancy bias during the screening process, where only 1 article was included from the same author group. </sec> <sec> <title>RESULTS</title> In the analysis of the 145 included studies, support vector machines were the most utilized ML technique (51/145, 35.2%), with the most studied disease being Parkinson disease (PD; reported in 87/145, 60%, studies). After 2017, 16 additional voice-affecting disorders were examined, in contrast to the 3 investigated previously. Furthermore, an upsurge in the use of artificial neural network–based architectures was observed after 2017. Almost half of the included studies were published in last 2 years (2021 and 2022). A broad interest from many countries was observed. Notably, nearly one-half (n=75) of the studies relied on 10 distinct data sets, and 11/145 (7.6%) used demographic data as an input for ML models. </sec> <sec> <title>CONCLUSIONS</title> This SLR revealed considerable interest across multiple countries in using ML techniques for diagnosing and monitoring voice-affecting disorders, with PD being the most studied disorder. However, the review identified several gaps, including limited and unbalanced data set usage in studies, and a focus on diagnostic test rather than disorder-specific monitoring. Despite the limitations of being constrained by only peer-reviewed publications written in English, the SLR provides valuable insights into the current state of research on ML-based voice-affecting disorder diagnosis and monitoring and highlighting areas to address in future research. </sec>" @default.
- W4319222016 created "2023-02-05" @default.
- W4319222016 creator A5000286398 @default.
- W4319222016 creator A5023385908 @default.
- W4319222016 creator A5050683535 @default.
- W4319222016 creator A5055871927 @default.
- W4319222016 date "2023-01-30" @default.
- W4319222016 modified "2023-10-16" @default.
- W4319222016 title "Applied Machine Learning Techniques to Diagnose Voice-Affecting Conditions and Disorders: Systematic Literature Review (Preprint)" @default.
- W4319222016 cites W1853705225 @default.
- W4319222016 cites W1964641208 @default.
- W4319222016 cites W1979205968 @default.
- W4319222016 cites W1996219784 @default.
- W4319222016 cites W2024075610 @default.
- W4319222016 cites W2032860265 @default.
- W4319222016 cites W2037760741 @default.
- W4319222016 cites W2042583062 @default.
- W4319222016 cites W2042990492 @default.
- W4319222016 cites W2084627109 @default.
- W4319222016 cites W2089109585 @default.
- W4319222016 cites W2094217267 @default.
- W4319222016 cites W2101141243 @default.
- W4319222016 cites W2112505157 @default.
- W4319222016 cites W2121282288 @default.
- W4319222016 cites W2150100186 @default.
- W4319222016 cites W2168104109 @default.
- W4319222016 cites W2272754358 @default.
- W4319222016 cites W2326767972 @default.
- W4319222016 cites W2390503303 @default.
- W4319222016 cites W2402137650 @default.
- W4319222016 cites W2409443996 @default.
- W4319222016 cites W2509204923 @default.
- W4319222016 cites W2530921900 @default.
- W4319222016 cites W2541624402 @default.
- W4319222016 cites W2554665268 @default.
- W4319222016 cites W2587191236 @default.
- W4319222016 cites W2593663519 @default.
- W4319222016 cites W2594191368 @default.
- W4319222016 cites W2728922832 @default.
- W4319222016 cites W2732150368 @default.
- W4319222016 cites W2746697180 @default.
- W4319222016 cites W2746935568 @default.
- W4319222016 cites W2752744672 @default.
- W4319222016 cites W2753916199 @default.
- W4319222016 cites W2755232679 @default.
- W4319222016 cites W2764216414 @default.
- W4319222016 cites W2770604845 @default.
- W4319222016 cites W2780134754 @default.
- W4319222016 cites W2789662105 @default.
- W4319222016 cites W2806825704 @default.
- W4319222016 cites W2808797111 @default.
- W4319222016 cites W2887590219 @default.
- W4319222016 cites W2888982149 @default.
- W4319222016 cites W2895891552 @default.
- W4319222016 cites W2896691302 @default.
- W4319222016 cites W2897093100 @default.
- W4319222016 cites W2898153030 @default.
- W4319222016 cites W2898866157 @default.
- W4319222016 cites W2899053767 @default.
- W4319222016 cites W2899107503 @default.
- W4319222016 cites W2900035714 @default.
- W4319222016 cites W2903737112 @default.
- W4319222016 cites W2908971995 @default.
- W4319222016 cites W2922842086 @default.
- W4319222016 cites W2939302023 @default.
- W4319222016 cites W2944492170 @default.
- W4319222016 cites W2945350190 @default.
- W4319222016 cites W2945932771 @default.
- W4319222016 cites W2946315310 @default.
- W4319222016 cites W2946595724 @default.
- W4319222016 cites W2946707891 @default.
- W4319222016 cites W2947796043 @default.
- W4319222016 cites W2952320437 @default.
- W4319222016 cites W2960721994 @default.
- W4319222016 cites W2968807426 @default.
- W4319222016 cites W2969944904 @default.
- W4319222016 cites W2976452633 @default.
- W4319222016 cites W2978177459 @default.
- W4319222016 cites W2980090549 @default.
- W4319222016 cites W2988290606 @default.
- W4319222016 cites W2991793569 @default.
- W4319222016 cites W2994897229 @default.
- W4319222016 cites W2996636445 @default.
- W4319222016 cites W3004815729 @default.
- W4319222016 cites W3005808401 @default.
- W4319222016 cites W3009448603 @default.
- W4319222016 cites W3014098196 @default.
- W4319222016 cites W3020826538 @default.
- W4319222016 cites W3037527963 @default.
- W4319222016 cites W3044372451 @default.
- W4319222016 cites W3087538850 @default.
- W4319222016 cites W3101840241 @default.
- W4319222016 cites W3102578184 @default.
- W4319222016 cites W3106009882 @default.
- W4319222016 cites W3108822321 @default.
- W4319222016 cites W3116857504 @default.
- W4319222016 cites W3117622607 @default.
- W4319222016 cites W3120964862 @default.
- W4319222016 cites W3122223340 @default.
- W4319222016 cites W3124411764 @default.