Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319222021> ?p ?o ?g. }
- W4319222021 endingPage "119931" @default.
- W4319222021 startingPage "119931" @default.
- W4319222021 abstract "Precise segmentation of subcortical structures from infant brain magnetic resonance (MR) images plays an essential role in studying early subcortical structural and functional developmental patterns and diagnosis of related brain disorders. However, due to the dynamic appearance changes, low tissue contrast, and tiny subcortical size in infant brain MR images, infant subcortical segmentation is a challenging task. In this paper, we propose a context-guided, attention-based, coarse-to-fine deep framework to precisely segment the infant subcortical structures. At the coarse stage, we aim to directly predict the signed distance maps (SDMs) from multi-modal intensity images, including T1w, T2w, and the ratio of T1w and T2w images, with an SDM-Unet, which can leverage the spatial context information, including the structural position information and the shape information of the target structure, to generate high-quality SDMs. At the fine stage, the predicted SDMs, which encode spatial-context information of each subcortical structure, are integrated with the multi-modal intensity images as the input to a multi-source and multi-path attention Unet (M2A-Unet) for achieving refined segmentation. Both the 3D spatial and channel attention blocks are added to guide the M2A-Unet to focus more on the important subregions and channels. We additionally incorporate the inner and outer subcortical boundaries as extra labels to help precisely estimate the ambiguous boundaries. We validate our method on an infant MR image dataset and on an unrelated neonatal MR image dataset. Compared to eleven state-of-the-art methods, the proposed framework consistently achieves higher segmentation accuracy in both qualitative and quantitative evaluations of infant MR images and also exhibits good generalizability in the neonatal dataset." @default.
- W4319222021 created "2023-02-05" @default.
- W4319222021 creator A5004823733 @default.
- W4319222021 creator A5006302877 @default.
- W4319222021 creator A5012278873 @default.
- W4319222021 creator A5014438799 @default.
- W4319222021 creator A5015236633 @default.
- W4319222021 creator A5070300188 @default.
- W4319222021 creator A5074942308 @default.
- W4319222021 date "2023-04-01" @default.
- W4319222021 modified "2023-10-16" @default.
- W4319222021 title "An attention-based context-informed deep framework for infant brain subcortical segmentation" @default.
- W4319222021 cites W1540050006 @default.
- W4319222021 cites W1553317920 @default.
- W4319222021 cites W1975821649 @default.
- W4319222021 cites W1977294554 @default.
- W4319222021 cites W1979393293 @default.
- W4319222021 cites W1991159145 @default.
- W4319222021 cites W2010651179 @default.
- W4319222021 cites W2012807513 @default.
- W4319222021 cites W2014827051 @default.
- W4319222021 cites W2024729467 @default.
- W4319222021 cites W2024915064 @default.
- W4319222021 cites W2025551837 @default.
- W4319222021 cites W2043739261 @default.
- W4319222021 cites W2080668963 @default.
- W4319222021 cites W2102595307 @default.
- W4319222021 cites W2103535064 @default.
- W4319222021 cites W2104465614 @default.
- W4319222021 cites W2113415937 @default.
- W4319222021 cites W2119544201 @default.
- W4319222021 cites W2122851913 @default.
- W4319222021 cites W2128422359 @default.
- W4319222021 cites W2132116135 @default.
- W4319222021 cites W2135160607 @default.
- W4319222021 cites W2155694557 @default.
- W4319222021 cites W2157848968 @default.
- W4319222021 cites W2535166298 @default.
- W4319222021 cites W2567599812 @default.
- W4319222021 cites W2732931556 @default.
- W4319222021 cites W2783800543 @default.
- W4319222021 cites W2791510948 @default.
- W4319222021 cites W2793631099 @default.
- W4319222021 cites W2888493720 @default.
- W4319222021 cites W2892324021 @default.
- W4319222021 cites W2920149494 @default.
- W4319222021 cites W2953130519 @default.
- W4319222021 cites W2954099113 @default.
- W4319222021 cites W2977883299 @default.
- W4319222021 cites W2988703708 @default.
- W4319222021 cites W3005193778 @default.
- W4319222021 cites W3008820576 @default.
- W4319222021 cites W3028368183 @default.
- W4319222021 cites W3038918411 @default.
- W4319222021 cites W3089648930 @default.
- W4319222021 cites W3112701542 @default.
- W4319222021 cites W3185007043 @default.
- W4319222021 cites W4200361079 @default.
- W4319222021 cites W4221045987 @default.
- W4319222021 cites W639708223 @default.
- W4319222021 doi "https://doi.org/10.1016/j.neuroimage.2023.119931" @default.
- W4319222021 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36746299" @default.
- W4319222021 hasPublicationYear "2023" @default.
- W4319222021 type Work @default.
- W4319222021 citedByCount "0" @default.
- W4319222021 crossrefType "journal-article" @default.
- W4319222021 hasAuthorship W4319222021A5004823733 @default.
- W4319222021 hasAuthorship W4319222021A5006302877 @default.
- W4319222021 hasAuthorship W4319222021A5012278873 @default.
- W4319222021 hasAuthorship W4319222021A5014438799 @default.
- W4319222021 hasAuthorship W4319222021A5015236633 @default.
- W4319222021 hasAuthorship W4319222021A5070300188 @default.
- W4319222021 hasAuthorship W4319222021A5074942308 @default.
- W4319222021 hasBestOaLocation W43192220211 @default.
- W4319222021 hasConcept C153083717 @default.
- W4319222021 hasConcept C153180895 @default.
- W4319222021 hasConcept C154945302 @default.
- W4319222021 hasConcept C15744967 @default.
- W4319222021 hasConcept C166957645 @default.
- W4319222021 hasConcept C169760540 @default.
- W4319222021 hasConcept C205649164 @default.
- W4319222021 hasConcept C2779226451 @default.
- W4319222021 hasConcept C2779343474 @default.
- W4319222021 hasConcept C31972630 @default.
- W4319222021 hasConcept C41008148 @default.
- W4319222021 hasConcept C89600930 @default.
- W4319222021 hasConceptScore W4319222021C153083717 @default.
- W4319222021 hasConceptScore W4319222021C153180895 @default.
- W4319222021 hasConceptScore W4319222021C154945302 @default.
- W4319222021 hasConceptScore W4319222021C15744967 @default.
- W4319222021 hasConceptScore W4319222021C166957645 @default.
- W4319222021 hasConceptScore W4319222021C169760540 @default.
- W4319222021 hasConceptScore W4319222021C205649164 @default.
- W4319222021 hasConceptScore W4319222021C2779226451 @default.
- W4319222021 hasConceptScore W4319222021C2779343474 @default.
- W4319222021 hasConceptScore W4319222021C31972630 @default.
- W4319222021 hasConceptScore W4319222021C41008148 @default.
- W4319222021 hasConceptScore W4319222021C89600930 @default.