Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319262502> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4319262502 abstract "One of the leading causes of death is CVD(Cardiovascular disease) which is communally referred to as heart disease. CVD is the summation of disorders that affect the heart's ability to function. Every year, over 18 million people worldwide die as a result of heart disease. One in three deaths from cardiovascular disease in them is preventable, and heart attacks can be predicted months in advance by assessing the patient's risk factors. Obesity, Blood Pressure, Cholesterol, and Glucose levels are some of the risk factors. The aim is to predict CVD based on risk factors of patients, who are affected by their habits and patients' basic health information, using the Cardiovascular Disease Dataset from Kaggle using Machine Learning and Deep Learning Algorithms. Smoking and Alcohol consumption are some practices that will maximize the possibility of getting cardiovascular disorders, and doing workouts will reduce the risk of getting cardiovascular disease. In our work, we have implemented four models for predicting CVD namely Logistic Regression, Naive Bayes, Deep Learning Model and Random Forest. The DL model, with an accuracy of 73.78 %, outperformed the other three models." @default.
- W4319262502 created "2023-02-06" @default.
- W4319262502 creator A5004033618 @default.
- W4319262502 creator A5016999295 @default.
- W4319262502 creator A5037211246 @default.
- W4319262502 creator A5061814952 @default.
- W4319262502 creator A5065443858 @default.
- W4319262502 date "2022-12-21" @default.
- W4319262502 modified "2023-09-23" @default.
- W4319262502 title "Cardiovascular Disease Prediction using Machine Learning and Deep Learning" @default.
- W4319262502 cites W2291439604 @default.
- W4319262502 cites W2323782716 @default.
- W4319262502 cites W2341741512 @default.
- W4319262502 cites W2583804535 @default.
- W4319262502 cites W2805523525 @default.
- W4319262502 cites W2943195586 @default.
- W4319262502 cites W3000714310 @default.
- W4319262502 cites W3084231313 @default.
- W4319262502 cites W3177781640 @default.
- W4319262502 cites W3203698729 @default.
- W4319262502 cites W4225272944 @default.
- W4319262502 cites W4285108805 @default.
- W4319262502 cites W4293690002 @default.
- W4319262502 cites W2586894223 @default.
- W4319262502 doi "https://doi.org/10.1109/csitss57437.2022.10026391" @default.
- W4319262502 hasPublicationYear "2022" @default.
- W4319262502 type Work @default.
- W4319262502 citedByCount "0" @default.
- W4319262502 crossrefType "proceedings-article" @default.
- W4319262502 hasAuthorship W4319262502A5004033618 @default.
- W4319262502 hasAuthorship W4319262502A5016999295 @default.
- W4319262502 hasAuthorship W4319262502A5037211246 @default.
- W4319262502 hasAuthorship W4319262502A5061814952 @default.
- W4319262502 hasAuthorship W4319262502A5065443858 @default.
- W4319262502 hasConcept C108583219 @default.
- W4319262502 hasConcept C11783203 @default.
- W4319262502 hasConcept C119857082 @default.
- W4319262502 hasConcept C12267149 @default.
- W4319262502 hasConcept C126322002 @default.
- W4319262502 hasConcept C151956035 @default.
- W4319262502 hasConcept C154945302 @default.
- W4319262502 hasConcept C164705383 @default.
- W4319262502 hasConcept C169258074 @default.
- W4319262502 hasConcept C2779134260 @default.
- W4319262502 hasConcept C2780074459 @default.
- W4319262502 hasConcept C41008148 @default.
- W4319262502 hasConcept C52001869 @default.
- W4319262502 hasConcept C71924100 @default.
- W4319262502 hasConcept C84393581 @default.
- W4319262502 hasConceptScore W4319262502C108583219 @default.
- W4319262502 hasConceptScore W4319262502C11783203 @default.
- W4319262502 hasConceptScore W4319262502C119857082 @default.
- W4319262502 hasConceptScore W4319262502C12267149 @default.
- W4319262502 hasConceptScore W4319262502C126322002 @default.
- W4319262502 hasConceptScore W4319262502C151956035 @default.
- W4319262502 hasConceptScore W4319262502C154945302 @default.
- W4319262502 hasConceptScore W4319262502C164705383 @default.
- W4319262502 hasConceptScore W4319262502C169258074 @default.
- W4319262502 hasConceptScore W4319262502C2779134260 @default.
- W4319262502 hasConceptScore W4319262502C2780074459 @default.
- W4319262502 hasConceptScore W4319262502C41008148 @default.
- W4319262502 hasConceptScore W4319262502C52001869 @default.
- W4319262502 hasConceptScore W4319262502C71924100 @default.
- W4319262502 hasConceptScore W4319262502C84393581 @default.
- W4319262502 hasLocation W43192625021 @default.
- W4319262502 hasOpenAccess W4319262502 @default.
- W4319262502 hasPrimaryLocation W43192625021 @default.
- W4319262502 hasRelatedWork W3004984807 @default.
- W4319262502 hasRelatedWork W3211546796 @default.
- W4319262502 hasRelatedWork W4223564025 @default.
- W4319262502 hasRelatedWork W4246246790 @default.
- W4319262502 hasRelatedWork W4283734589 @default.
- W4319262502 hasRelatedWork W4283784365 @default.
- W4319262502 hasRelatedWork W4285507452 @default.
- W4319262502 hasRelatedWork W4286768673 @default.
- W4319262502 hasRelatedWork W4294067781 @default.
- W4319262502 hasRelatedWork W4311106074 @default.
- W4319262502 isParatext "false" @default.
- W4319262502 isRetracted "false" @default.
- W4319262502 workType "article" @default.