Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319262605> ?p ?o ?g. }
- W4319262605 endingPage "193" @default.
- W4319262605 startingPage "168" @default.
- W4319262605 abstract "Abstract Effort‐Aware Defect Prediction (EADP) methods sort software modules based on the defect density and guide the testing team to inspect the modules with high defect density first. Previous studies indicated that some feature selection methods could improve the performance of Classification‐Based Defect Prediction (CBDP) models, and the Correlation‐based feature subset selection method with the Best First strategy (CorBF) performed the best. However, the practical benefits of feature selection methods on EADP performance are still unknown, and blindly employing the best‐performing CorBF method in CBDP to pre‐process the defect datasets may not improve the performance of EADP models but possibly result in performance degradation. To assess the impact of the feature selection techniques on EADP, a total of 24 feature selection methods with 10 classifiers embedded in a state‐of‐the‐art EADP model (CBS+) on the 41 PROMISE defect datasets were examined. We employ six evaluation metrics to assess the performance of EADP models comprehensively. The results show that (1) The impact of the feature selection methods varies in classifiers and datasets. (2) The four wrapper‐based feature subset selection methods with forwards search, that is, AdaBoost with Forwards Search, Deep Forest with Forwards Search, Random Forest with Forwards Search, and XGBoost with Forwards Search (XGBF) are better than other methods across the studied classifiers and the used datasets. And XGBF with XGBoost as the embedded classifier in CBS+ performs the best on the datasets. (3) The best‐performing CorBF method in CBDP does not perform well on the EADP task. (4) The selected features vary with different feature selection methods and different datasets, and the features noc (number of children), ic (inheritance coupling), cbo (coupling between object classes), and cbm (coupling between methods) are frequently selected by the four wrapper‐based feature subset selection methods with forwards search. (5) Using AdaBoost, deep forest, random forest, and XGBoost as the base classifiers embedded in CBS+ can achieve the best performance. In summary, we recommend the software testing team should employ XGBF with XGBoost as the embedded classifier in CBS+ to enhance the EADP performance." @default.
- W4319262605 created "2023-02-06" @default.
- W4319262605 creator A5007982150 @default.
- W4319262605 creator A5027202117 @default.
- W4319262605 creator A5038252270 @default.
- W4319262605 creator A5047060039 @default.
- W4319262605 creator A5051403641 @default.
- W4319262605 creator A5077261644 @default.
- W4319262605 date "2023-02-05" @default.
- W4319262605 modified "2023-10-13" @default.
- W4319262605 title "The impact of feature selection techniques on effort‐aware defect prediction: An empirical study" @default.
- W4319262605 cites W1611601820 @default.
- W4319262605 cites W2045321086 @default.
- W4319262605 cites W2047338137 @default.
- W4319262605 cites W2050496630 @default.
- W4319262605 cites W2051978688 @default.
- W4319262605 cites W2052292644 @default.
- W4319262605 cites W2080521990 @default.
- W4319262605 cites W2099919734 @default.
- W4319262605 cites W2104471998 @default.
- W4319262605 cites W2139457591 @default.
- W4319262605 cites W2145913198 @default.
- W4319262605 cites W2147386665 @default.
- W4319262605 cites W2149014999 @default.
- W4319262605 cites W2164627280 @default.
- W4319262605 cites W2474835145 @default.
- W4319262605 cites W2510312579 @default.
- W4319262605 cites W2528160956 @default.
- W4319262605 cites W2548915941 @default.
- W4319262605 cites W2560646185 @default.
- W4319262605 cites W2731743750 @default.
- W4319262605 cites W2744611928 @default.
- W4319262605 cites W2774137886 @default.
- W4319262605 cites W2888227411 @default.
- W4319262605 cites W2898124301 @default.
- W4319262605 cites W2911121806 @default.
- W4319262605 cites W2913405424 @default.
- W4319262605 cites W2921645495 @default.
- W4319262605 cites W2955354980 @default.
- W4319262605 cites W2959969964 @default.
- W4319262605 cites W2982970300 @default.
- W4319262605 cites W2998044922 @default.
- W4319262605 cites W3007442642 @default.
- W4319262605 cites W3013436746 @default.
- W4319262605 cites W3023043494 @default.
- W4319262605 cites W3034708533 @default.
- W4319262605 cites W3042173389 @default.
- W4319262605 cites W3087938565 @default.
- W4319262605 cites W3089815828 @default.
- W4319262605 cites W3105203384 @default.
- W4319262605 cites W3106142244 @default.
- W4319262605 cites W3108394417 @default.
- W4319262605 cites W3150420232 @default.
- W4319262605 cites W3157559227 @default.
- W4319262605 cites W3166320127 @default.
- W4319262605 cites W3173517142 @default.
- W4319262605 cites W3174745599 @default.
- W4319262605 cites W3175000455 @default.
- W4319262605 cites W3199773807 @default.
- W4319262605 cites W3217507642 @default.
- W4319262605 cites W4200391634 @default.
- W4319262605 cites W4206904750 @default.
- W4319262605 cites W4210671315 @default.
- W4319262605 cites W4224287853 @default.
- W4319262605 cites W4281384435 @default.
- W4319262605 cites W4293764002 @default.
- W4319262605 cites W4296143043 @default.
- W4319262605 doi "https://doi.org/10.1049/sfw2.12099" @default.
- W4319262605 hasPublicationYear "2023" @default.
- W4319262605 type Work @default.
- W4319262605 citedByCount "4" @default.
- W4319262605 countsByYear W43192626052023 @default.
- W4319262605 crossrefType "journal-article" @default.
- W4319262605 hasAuthorship W4319262605A5007982150 @default.
- W4319262605 hasAuthorship W4319262605A5027202117 @default.
- W4319262605 hasAuthorship W4319262605A5038252270 @default.
- W4319262605 hasAuthorship W4319262605A5047060039 @default.
- W4319262605 hasAuthorship W4319262605A5051403641 @default.
- W4319262605 hasAuthorship W4319262605A5077261644 @default.
- W4319262605 hasBestOaLocation W43192626051 @default.
- W4319262605 hasConcept C1009929 @default.
- W4319262605 hasConcept C119857082 @default.
- W4319262605 hasConcept C124101348 @default.
- W4319262605 hasConcept C138885662 @default.
- W4319262605 hasConcept C141404830 @default.
- W4319262605 hasConcept C148483581 @default.
- W4319262605 hasConcept C153180895 @default.
- W4319262605 hasConcept C154945302 @default.
- W4319262605 hasConcept C169258074 @default.
- W4319262605 hasConcept C199360897 @default.
- W4319262605 hasConcept C23123220 @default.
- W4319262605 hasConcept C2776401178 @default.
- W4319262605 hasConcept C2777904410 @default.
- W4319262605 hasConcept C41008148 @default.
- W4319262605 hasConcept C41895202 @default.
- W4319262605 hasConcept C81917197 @default.
- W4319262605 hasConcept C88548561 @default.
- W4319262605 hasConcept C95623464 @default.