Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319262956> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4319262956 abstract "Multifrequency synthetic aperture radar (SAR) data have been applied to discriminate subtle differences in the vegetation and to better characterize its structural properties, since each SAR frequency will interact with the different sections of the vegetation canopy. In this study, our main objective was to evaluate the use of multifrequency Sentinel-1 and ALOS-2/PALSAR-2 data for stem volume estimations in Eucalyptus sp. and Pinus sp. plantations using three different machine learning algorithms: random forest (RF), support vector regression (SVR), and extreme gradient boosting (XGB). Different experiments were carried out using combinations of predictor variables derived from both SAR sensors: backscattering, polarimetric decompositions, and interferometry data, and field data considering specific models for Eucalyptus sp. and Pinus sp. and a generic model comprising all forest plantations data. The machine learning models using predictor variables derived from SAR data achieved moderately high accuracy to predict stem volume, mainly when SAR data were used in combination with stand age (Experiment iv). In the best prediction scenario (Experiment iv), the RF, SVR, and XGB models were able to explain 81.7%, 68.5%, and 81.8% [coefficient of variation (R2) values] of stem volume variability considering the generic models, respectively. Our results pointed out that the RF algorithm showed the best performance in predicting stem volume with significant good results and easier implementation in comparison with the other two algorithms (SVR and XGB)." @default.
- W4319262956 created "2023-02-06" @default.
- W4319262956 creator A5022903823 @default.
- W4319262956 creator A5057711572 @default.
- W4319262956 creator A5077545318 @default.
- W4319262956 creator A5085153203 @default.
- W4319262956 creator A5086677475 @default.
- W4319262956 date "2023-02-06" @default.
- W4319262956 modified "2023-09-30" @default.
- W4319262956 title "Estimating stem volume of Eucalyptus sp. and Pinus sp. plantations in Brazil, using Sentinel-1B and ALOS-2/PALSAR-2 data" @default.
- W4319262956 doi "https://doi.org/10.1117/1.jrs.17.014513" @default.
- W4319262956 hasPublicationYear "2023" @default.
- W4319262956 type Work @default.
- W4319262956 citedByCount "0" @default.
- W4319262956 crossrefType "journal-article" @default.
- W4319262956 hasAuthorship W4319262956A5022903823 @default.
- W4319262956 hasAuthorship W4319262956A5057711572 @default.
- W4319262956 hasAuthorship W4319262956A5077545318 @default.
- W4319262956 hasAuthorship W4319262956A5085153203 @default.
- W4319262956 hasAuthorship W4319262956A5086677475 @default.
- W4319262956 hasConcept C101000010 @default.
- W4319262956 hasConcept C121332964 @default.
- W4319262956 hasConcept C12267149 @default.
- W4319262956 hasConcept C127313418 @default.
- W4319262956 hasConcept C142724271 @default.
- W4319262956 hasConcept C154945302 @default.
- W4319262956 hasConcept C169258074 @default.
- W4319262956 hasConcept C18903297 @default.
- W4319262956 hasConcept C20556612 @default.
- W4319262956 hasConcept C2776133958 @default.
- W4319262956 hasConcept C2779752776 @default.
- W4319262956 hasConcept C33923547 @default.
- W4319262956 hasConcept C41008148 @default.
- W4319262956 hasConcept C52001869 @default.
- W4319262956 hasConcept C62520636 @default.
- W4319262956 hasConcept C62649853 @default.
- W4319262956 hasConcept C71924100 @default.
- W4319262956 hasConcept C86803240 @default.
- W4319262956 hasConcept C87360688 @default.
- W4319262956 hasConceptScore W4319262956C101000010 @default.
- W4319262956 hasConceptScore W4319262956C121332964 @default.
- W4319262956 hasConceptScore W4319262956C12267149 @default.
- W4319262956 hasConceptScore W4319262956C127313418 @default.
- W4319262956 hasConceptScore W4319262956C142724271 @default.
- W4319262956 hasConceptScore W4319262956C154945302 @default.
- W4319262956 hasConceptScore W4319262956C169258074 @default.
- W4319262956 hasConceptScore W4319262956C18903297 @default.
- W4319262956 hasConceptScore W4319262956C20556612 @default.
- W4319262956 hasConceptScore W4319262956C2776133958 @default.
- W4319262956 hasConceptScore W4319262956C2779752776 @default.
- W4319262956 hasConceptScore W4319262956C33923547 @default.
- W4319262956 hasConceptScore W4319262956C41008148 @default.
- W4319262956 hasConceptScore W4319262956C52001869 @default.
- W4319262956 hasConceptScore W4319262956C62520636 @default.
- W4319262956 hasConceptScore W4319262956C62649853 @default.
- W4319262956 hasConceptScore W4319262956C71924100 @default.
- W4319262956 hasConceptScore W4319262956C86803240 @default.
- W4319262956 hasConceptScore W4319262956C87360688 @default.
- W4319262956 hasIssue "01" @default.
- W4319262956 hasLocation W43192629561 @default.
- W4319262956 hasOpenAccess W4319262956 @default.
- W4319262956 hasPrimaryLocation W43192629561 @default.
- W4319262956 hasRelatedWork W2096363641 @default.
- W4319262956 hasRelatedWork W2505282017 @default.
- W4319262956 hasRelatedWork W2566202276 @default.
- W4319262956 hasRelatedWork W2985924212 @default.
- W4319262956 hasRelatedWork W3122308606 @default.
- W4319262956 hasRelatedWork W3157468574 @default.
- W4319262956 hasRelatedWork W3163579675 @default.
- W4319262956 hasRelatedWork W4211050633 @default.
- W4319262956 hasRelatedWork W4214858907 @default.
- W4319262956 hasRelatedWork W4281846282 @default.
- W4319262956 hasVolume "17" @default.
- W4319262956 isParatext "false" @default.
- W4319262956 isRetracted "false" @default.
- W4319262956 workType "article" @default.