Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319294661> ?p ?o ?g. }
- W4319294661 endingPage "3442" @default.
- W4319294661 startingPage "3427" @default.
- W4319294661 abstract "Artificial intelligence (AI) can accelerate catalyst design by identifying key physicochemical descriptive parameters correlated with the underlying processes triggering, favoring, or hindering the performance. In analogy to genes in biology, these parameters might be called materials genes of heterogeneous catalysis. However, widely used AI methods require big data, and only the smallest part of the available data meets the quality requirement for data-efficient AI. Here, we use rigorous experimental procedures, designed to consistently take into account the kinetics of the catalyst active states formation, to measure 55 physicochemical parameters as well as the reactivity of 12 catalysts toward ethane, propane, and n-butane oxidation reactions. These materials are based on vanadium or manganese redox-active elements and present diverse phase compositions, crystallinities, and catalytic behaviors. By applying the sure-independence-screening-and-sparsifying-operator symbolic-regression approach to the consistent data set, we identify nonlinear property-function relationships depending on several key parameters and reflecting the intricate interplay of processes that govern the formation of olefins and oxygenates: local transport, site isolation, surface redox activity, adsorption, and the material dynamical restructuring under reaction conditions. These processes are captured by parameters derived from N2 adsorption, X-ray photoelectron spectroscopy (XPS), and near-ambient-pressure in situ XPS. The data-centric approach indicates the most relevant characterization techniques to be used for catalyst design and provides rules on how the catalyst properties may be tuned in order to achieve the desired performance." @default.
- W4319294661 created "2023-02-07" @default.
- W4319294661 creator A5002594652 @default.
- W4319294661 creator A5009529117 @default.
- W4319294661 creator A5010271376 @default.
- W4319294661 creator A5019247103 @default.
- W4319294661 creator A5023956685 @default.
- W4319294661 creator A5027448181 @default.
- W4319294661 creator A5049622748 @default.
- W4319294661 creator A5061251166 @default.
- W4319294661 creator A5066031848 @default.
- W4319294661 creator A5066673680 @default.
- W4319294661 creator A5067145443 @default.
- W4319294661 creator A5068604731 @default.
- W4319294661 creator A5076627309 @default.
- W4319294661 creator A5080651624 @default.
- W4319294661 date "2023-02-06" @default.
- W4319294661 modified "2023-10-14" @default.
- W4319294661 title "Data-Centric Heterogeneous Catalysis: Identifying Rules and Materials Genes of Alkane Selective Oxidation" @default.
- W4319294661 cites W177217288 @default.
- W4319294661 cites W1801884389 @default.
- W4319294661 cites W1967577483 @default.
- W4319294661 cites W1994050652 @default.
- W4319294661 cites W2001383554 @default.
- W4319294661 cites W2001423828 @default.
- W4319294661 cites W2002628117 @default.
- W4319294661 cites W2003434162 @default.
- W4319294661 cites W2005332234 @default.
- W4319294661 cites W2006984582 @default.
- W4319294661 cites W2011411102 @default.
- W4319294661 cites W2015437141 @default.
- W4319294661 cites W2016469623 @default.
- W4319294661 cites W2017324593 @default.
- W4319294661 cites W2020595232 @default.
- W4319294661 cites W2027362160 @default.
- W4319294661 cites W2031395440 @default.
- W4319294661 cites W2032471036 @default.
- W4319294661 cites W2039410044 @default.
- W4319294661 cites W2058086446 @default.
- W4319294661 cites W2068675877 @default.
- W4319294661 cites W2082947442 @default.
- W4319294661 cites W2114451571 @default.
- W4319294661 cites W2114726313 @default.
- W4319294661 cites W2117198224 @default.
- W4319294661 cites W2146414738 @default.
- W4319294661 cites W2154115947 @default.
- W4319294661 cites W2307947977 @default.
- W4319294661 cites W2336414925 @default.
- W4319294661 cites W2465010415 @default.
- W4319294661 cites W2507975535 @default.
- W4319294661 cites W2526743005 @default.
- W4319294661 cites W2601975075 @default.
- W4319294661 cites W2608082972 @default.
- W4319294661 cites W2734651930 @default.
- W4319294661 cites W2748478263 @default.
- W4319294661 cites W2755612051 @default.
- W4319294661 cites W2797402103 @default.
- W4319294661 cites W2803438242 @default.
- W4319294661 cites W2804505091 @default.
- W4319294661 cites W2808740881 @default.
- W4319294661 cites W2888337398 @default.
- W4319294661 cites W2890433360 @default.
- W4319294661 cites W2890961624 @default.
- W4319294661 cites W2893275328 @default.
- W4319294661 cites W2903116920 @default.
- W4319294661 cites W2904811049 @default.
- W4319294661 cites W2907897763 @default.
- W4319294661 cites W2943102921 @default.
- W4319294661 cites W2945964866 @default.
- W4319294661 cites W2946199134 @default.
- W4319294661 cites W2950801504 @default.
- W4319294661 cites W2952544883 @default.
- W4319294661 cites W2968830447 @default.
- W4319294661 cites W2996448308 @default.
- W4319294661 cites W3022628809 @default.
- W4319294661 cites W3030576337 @default.
- W4319294661 cites W3041180428 @default.
- W4319294661 cites W3092413027 @default.
- W4319294661 cites W3093485337 @default.
- W4319294661 cites W3097147261 @default.
- W4319294661 cites W3098179186 @default.
- W4319294661 cites W3158608590 @default.
- W4319294661 cites W3162992104 @default.
- W4319294661 cites W3196882695 @default.
- W4319294661 cites W3204165845 @default.
- W4319294661 cites W4211220677 @default.
- W4319294661 cites W4211251374 @default.
- W4319294661 cites W4220833539 @default.
- W4319294661 cites W4221127808 @default.
- W4319294661 cites W4229044212 @default.
- W4319294661 cites W4231310982 @default.
- W4319294661 doi "https://doi.org/10.1021/jacs.2c11117" @default.
- W4319294661 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36745555" @default.
- W4319294661 hasPublicationYear "2023" @default.
- W4319294661 type Work @default.
- W4319294661 citedByCount "6" @default.
- W4319294661 countsByYear W43192946612023 @default.
- W4319294661 crossrefType "journal-article" @default.