Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319297029> ?p ?o ?g. }
- W4319297029 endingPage "809" @default.
- W4319297029 startingPage "809" @default.
- W4319297029 abstract "Commercial e-learning platforms have to overcome the challenge of resource overload and find the most suitable material for educators using a recommendation system (RS) when an exponential increase occurs in the amount of available online educational resources. Therefore, we propose a novel DNN method that combines synchronous sequences and heterogeneous features to more accurately generate candidates in e-learning platforms that face an exponential increase in the number of available online educational courses and learners. Mitigating the learners’ cold-start problem was also taken into consideration during the modeling. Grouping learners in the first phase, and combining sequence and heterogeneous data as embeddings into recommendations using deep neural networks, are the main concepts of the proposed approach. Empirical results confirmed the proposed solution’s potential. In particular, the precision rates were equal to 0.626 and 0.492 in the cases of Top-1 and Top-5 courses, respectively. Learners’ cold-start errors were 0.618 and 0.697 for 25 and 50 new learners." @default.
- W4319297029 created "2023-02-07" @default.
- W4319297029 creator A5020395341 @default.
- W4319297029 creator A5023896107 @default.
- W4319297029 creator A5033811396 @default.
- W4319297029 creator A5036343089 @default.
- W4319297029 creator A5076361725 @default.
- W4319297029 date "2023-02-06" @default.
- W4319297029 modified "2023-10-02" @default.
- W4319297029 title "Deep Learning Recommendations of E-Education Based on Clustering and Sequence" @default.
- W4319297029 cites W166867944 @default.
- W4319297029 cites W1690919088 @default.
- W4319297029 cites W1720514416 @default.
- W4319297029 cites W2054141820 @default.
- W4319297029 cites W2063871698 @default.
- W4319297029 cites W2100235918 @default.
- W4319297029 cites W2108920354 @default.
- W4319297029 cites W2117311203 @default.
- W4319297029 cites W2142144955 @default.
- W4319297029 cites W2158515176 @default.
- W4319297029 cites W2463279551 @default.
- W4319297029 cites W2509893387 @default.
- W4319297029 cites W2512971201 @default.
- W4319297029 cites W2604662567 @default.
- W4319297029 cites W2742272831 @default.
- W4319297029 cites W2913944817 @default.
- W4319297029 cites W3002621527 @default.
- W4319297029 cites W3045200674 @default.
- W4319297029 cites W3110095155 @default.
- W4319297029 cites W3124806927 @default.
- W4319297029 cites W3159414726 @default.
- W4319297029 cites W3193778305 @default.
- W4319297029 cites W3202825385 @default.
- W4319297029 cites W3216477647 @default.
- W4319297029 cites W39762900 @default.
- W4319297029 cites W4205688692 @default.
- W4319297029 cites W4285123209 @default.
- W4319297029 cites W4288083766 @default.
- W4319297029 cites W4297504216 @default.
- W4319297029 cites W4307703278 @default.
- W4319297029 cites W4311636742 @default.
- W4319297029 cites W4313316862 @default.
- W4319297029 doi "https://doi.org/10.3390/electronics12040809" @default.
- W4319297029 hasPublicationYear "2023" @default.
- W4319297029 type Work @default.
- W4319297029 citedByCount "10" @default.
- W4319297029 countsByYear W43192970292023 @default.
- W4319297029 crossrefType "journal-article" @default.
- W4319297029 hasAuthorship W4319297029A5020395341 @default.
- W4319297029 hasAuthorship W4319297029A5023896107 @default.
- W4319297029 hasAuthorship W4319297029A5033811396 @default.
- W4319297029 hasAuthorship W4319297029A5036343089 @default.
- W4319297029 hasAuthorship W4319297029A5076361725 @default.
- W4319297029 hasBestOaLocation W43192970291 @default.
- W4319297029 hasConcept C108583219 @default.
- W4319297029 hasConcept C119857082 @default.
- W4319297029 hasConcept C154945302 @default.
- W4319297029 hasConcept C15744967 @default.
- W4319297029 hasConcept C19417346 @default.
- W4319297029 hasConcept C206345919 @default.
- W4319297029 hasConcept C2778112365 @default.
- W4319297029 hasConcept C2984842247 @default.
- W4319297029 hasConcept C2987136238 @default.
- W4319297029 hasConcept C31258907 @default.
- W4319297029 hasConcept C41008148 @default.
- W4319297029 hasConcept C50644808 @default.
- W4319297029 hasConcept C54355233 @default.
- W4319297029 hasConcept C73555534 @default.
- W4319297029 hasConcept C86803240 @default.
- W4319297029 hasConceptScore W4319297029C108583219 @default.
- W4319297029 hasConceptScore W4319297029C119857082 @default.
- W4319297029 hasConceptScore W4319297029C154945302 @default.
- W4319297029 hasConceptScore W4319297029C15744967 @default.
- W4319297029 hasConceptScore W4319297029C19417346 @default.
- W4319297029 hasConceptScore W4319297029C206345919 @default.
- W4319297029 hasConceptScore W4319297029C2778112365 @default.
- W4319297029 hasConceptScore W4319297029C2984842247 @default.
- W4319297029 hasConceptScore W4319297029C2987136238 @default.
- W4319297029 hasConceptScore W4319297029C31258907 @default.
- W4319297029 hasConceptScore W4319297029C41008148 @default.
- W4319297029 hasConceptScore W4319297029C50644808 @default.
- W4319297029 hasConceptScore W4319297029C54355233 @default.
- W4319297029 hasConceptScore W4319297029C73555534 @default.
- W4319297029 hasConceptScore W4319297029C86803240 @default.
- W4319297029 hasIssue "4" @default.
- W4319297029 hasLocation W43192970291 @default.
- W4319297029 hasOpenAccess W4319297029 @default.
- W4319297029 hasPrimaryLocation W43192970291 @default.
- W4319297029 hasRelatedWork W3014300295 @default.
- W4319297029 hasRelatedWork W3164822677 @default.
- W4319297029 hasRelatedWork W4223943233 @default.
- W4319297029 hasRelatedWork W4225161397 @default.
- W4319297029 hasRelatedWork W4250304930 @default.
- W4319297029 hasRelatedWork W4312200629 @default.
- W4319297029 hasRelatedWork W4360585206 @default.
- W4319297029 hasRelatedWork W4364306694 @default.
- W4319297029 hasRelatedWork W4380075502 @default.
- W4319297029 hasRelatedWork W4380086463 @default.