Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319300504> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4319300504 abstract "Recently, masked image modeling (MIM) has gained considerable attention due to its ability to learn from vast amounts of unlabeled data and has been demonstrated to be effective on various vision tasks involving natural images. Meanwhile, the potential of self-supervised learning in modeling 3D medical images is anticipated to be immense due to the high quantities of unlabeled images and the expense and difficulty of quality labels. However, MIM’s applicability to medical images remains uncertain. In this paper, we demonstrate that masked image modeling approaches can also advance 3D medical image analysis in addition to natural images. We study how masked image modeling strategies leverage performance from the viewpoints of 3D medical image segmentation as a representative downstream task: i) when compared to naive contrastive learning, masked image modeling approaches accelerate the convergence of supervised training even faster (1.40×) and ultimately produce a higher dice score; ii) predicting raw voxel values with a high masking ratio and a relatively smaller patch size is nontrivial self-supervised pretext-task for medical images modeling; iii) a lightweight decoder or projection head design for reconstruction is robust for masked image modeling on 3D medical images which speeds up training and reduce cost; iv) finally, we also investigate the effectiveness of MIM methods under different practical scenarios where different image resolutions and labeled data ratios are applied. Anonymized codes are available at https://github.com/ZEKAICHEN/MIM-Med3D." @default.
- W4319300504 created "2023-02-07" @default.
- W4319300504 creator A5004872271 @default.
- W4319300504 creator A5005791474 @default.
- W4319300504 creator A5010036720 @default.
- W4319300504 creator A5042957984 @default.
- W4319300504 creator A5056041132 @default.
- W4319300504 creator A5088724270 @default.
- W4319300504 date "2023-01-01" @default.
- W4319300504 modified "2023-10-14" @default.
- W4319300504 title "Masked Image Modeling Advances 3D Medical Image Analysis" @default.
- W4319300504 cites W2063971957 @default.
- W4319300504 cites W2147800946 @default.
- W4319300504 cites W219040644 @default.
- W4319300504 cites W2808604288 @default.
- W4319300504 cites W2956123709 @default.
- W4319300504 cites W2963420272 @default.
- W4319300504 cites W2979427035 @default.
- W4319300504 cites W2993044507 @default.
- W4319300504 cites W2998175747 @default.
- W4319300504 cites W3017243633 @default.
- W4319300504 cites W3033671339 @default.
- W4319300504 cites W3049757379 @default.
- W4319300504 cites W3092603779 @default.
- W4319300504 cites W3105070630 @default.
- W4319300504 cites W3120430728 @default.
- W4319300504 cites W3138516171 @default.
- W4319300504 cites W3171007011 @default.
- W4319300504 cites W3203825712 @default.
- W4319300504 cites W3205076722 @default.
- W4319300504 cites W4212875960 @default.
- W4319300504 cites W4221163766 @default.
- W4319300504 doi "https://doi.org/10.1109/wacv56688.2023.00201" @default.
- W4319300504 hasPublicationYear "2023" @default.
- W4319300504 type Work @default.
- W4319300504 citedByCount "7" @default.
- W4319300504 countsByYear W43193005042022 @default.
- W4319300504 countsByYear W43193005042023 @default.
- W4319300504 crossrefType "proceedings-article" @default.
- W4319300504 hasAuthorship W4319300504A5004872271 @default.
- W4319300504 hasAuthorship W4319300504A5005791474 @default.
- W4319300504 hasAuthorship W4319300504A5010036720 @default.
- W4319300504 hasAuthorship W4319300504A5042957984 @default.
- W4319300504 hasAuthorship W4319300504A5056041132 @default.
- W4319300504 hasAuthorship W4319300504A5088724270 @default.
- W4319300504 hasBestOaLocation W43193005042 @default.
- W4319300504 hasConcept C115961682 @default.
- W4319300504 hasConcept C119857082 @default.
- W4319300504 hasConcept C124504099 @default.
- W4319300504 hasConcept C153083717 @default.
- W4319300504 hasConcept C153180895 @default.
- W4319300504 hasConcept C154945302 @default.
- W4319300504 hasConcept C31601959 @default.
- W4319300504 hasConcept C31972630 @default.
- W4319300504 hasConcept C41008148 @default.
- W4319300504 hasConcept C54170458 @default.
- W4319300504 hasConcept C89600930 @default.
- W4319300504 hasConceptScore W4319300504C115961682 @default.
- W4319300504 hasConceptScore W4319300504C119857082 @default.
- W4319300504 hasConceptScore W4319300504C124504099 @default.
- W4319300504 hasConceptScore W4319300504C153083717 @default.
- W4319300504 hasConceptScore W4319300504C153180895 @default.
- W4319300504 hasConceptScore W4319300504C154945302 @default.
- W4319300504 hasConceptScore W4319300504C31601959 @default.
- W4319300504 hasConceptScore W4319300504C31972630 @default.
- W4319300504 hasConceptScore W4319300504C41008148 @default.
- W4319300504 hasConceptScore W4319300504C54170458 @default.
- W4319300504 hasConceptScore W4319300504C89600930 @default.
- W4319300504 hasLocation W43193005041 @default.
- W4319300504 hasLocation W43193005042 @default.
- W4319300504 hasOpenAccess W4319300504 @default.
- W4319300504 hasPrimaryLocation W43193005041 @default.
- W4319300504 hasRelatedWork W1669643531 @default.
- W4319300504 hasRelatedWork W1982826852 @default.
- W4319300504 hasRelatedWork W2005437358 @default.
- W4319300504 hasRelatedWork W2008656436 @default.
- W4319300504 hasRelatedWork W2023558673 @default.
- W4319300504 hasRelatedWork W2110230079 @default.
- W4319300504 hasRelatedWork W2134924024 @default.
- W4319300504 hasRelatedWork W2517104666 @default.
- W4319300504 hasRelatedWork W2613186388 @default.
- W4319300504 hasRelatedWork W1967061043 @default.
- W4319300504 isParatext "false" @default.
- W4319300504 isRetracted "false" @default.
- W4319300504 workType "article" @default.