Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319302563> ?p ?o ?g. }
- W4319302563 endingPage "10966" @default.
- W4319302563 startingPage "10956" @default.
- W4319302563 abstract "The accurate detection of abnormal working conditions is very important for the safe and stable operation of production process in process industry. Considering that normal data can be easily obtained in industry, unsupervised learning is one of the important methods of anomaly detection. Different from the experience setting of unsupervised anomaly detection index, supervised learning can set anomaly detection index automatically. But it is mostly used in the research of fault classification. In this paper, a new Cascaded Bagging-PCA and CNN Classification Network (CBPCA-CNN) was proposed to realize supervised anomaly detection. The proposed CBPCA-CNN method had the advantages of unsupervised feature extraction and supervised classification decision, which was helpful to improve the detection accuracy. The validation results on the standard data set of the TE process showed that the average accuracy of CBPCA-CNN method was 97.67%, which was higher than the compared methods. This paper verified the feasibility of using supervised learning method to solve anomaly detection." @default.
- W4319302563 created "2023-02-07" @default.
- W4319302563 creator A5010536380 @default.
- W4319302563 creator A5060425211 @default.
- W4319302563 creator A5073616854 @default.
- W4319302563 date "2023-11-01" @default.
- W4319302563 modified "2023-09-27" @default.
- W4319302563 title "Abnormal Condition Detection Method of Industrial Processes Based on the Cascaded Bagging-PCA and CNN Classification Network" @default.
- W4319302563 cites W1970529538 @default.
- W4319302563 cites W2004186751 @default.
- W4319302563 cites W2008616192 @default.
- W4319302563 cites W2024094473 @default.
- W4319302563 cites W2035137107 @default.
- W4319302563 cites W2087346698 @default.
- W4319302563 cites W2112796928 @default.
- W4319302563 cites W2132984323 @default.
- W4319302563 cites W2299893680 @default.
- W4319302563 cites W2512976014 @default.
- W4319302563 cites W2578946248 @default.
- W4319302563 cites W2591133720 @default.
- W4319302563 cites W2608089442 @default.
- W4319302563 cites W2729692699 @default.
- W4319302563 cites W2799289987 @default.
- W4319302563 cites W2928156582 @default.
- W4319302563 cites W2973694455 @default.
- W4319302563 cites W2983290144 @default.
- W4319302563 cites W2997519437 @default.
- W4319302563 cites W3007466645 @default.
- W4319302563 cites W3011387335 @default.
- W4319302563 cites W3030713429 @default.
- W4319302563 cites W3048809112 @default.
- W4319302563 cites W3083455217 @default.
- W4319302563 cites W3083581526 @default.
- W4319302563 cites W3113008830 @default.
- W4319302563 cites W3116250684 @default.
- W4319302563 cites W3117564001 @default.
- W4319302563 cites W3126242280 @default.
- W4319302563 cites W3128871194 @default.
- W4319302563 cites W3129573171 @default.
- W4319302563 cites W3136545562 @default.
- W4319302563 cites W3150431878 @default.
- W4319302563 cites W3156618009 @default.
- W4319302563 cites W3163885119 @default.
- W4319302563 cites W3166780408 @default.
- W4319302563 cites W3186673873 @default.
- W4319302563 cites W3210242925 @default.
- W4319302563 cites W4200179031 @default.
- W4319302563 cites W4206423371 @default.
- W4319302563 cites W4220785625 @default.
- W4319302563 cites W4223503656 @default.
- W4319302563 cites W4231106771 @default.
- W4319302563 cites W4249625715 @default.
- W4319302563 cites W4281298147 @default.
- W4319302563 cites W4285132235 @default.
- W4319302563 doi "https://doi.org/10.1109/tii.2023.3242811" @default.
- W4319302563 hasPublicationYear "2023" @default.
- W4319302563 type Work @default.
- W4319302563 citedByCount "1" @default.
- W4319302563 countsByYear W43193025632023 @default.
- W4319302563 crossrefType "journal-article" @default.
- W4319302563 hasAuthorship W4319302563A5010536380 @default.
- W4319302563 hasAuthorship W4319302563A5060425211 @default.
- W4319302563 hasAuthorship W4319302563A5073616854 @default.
- W4319302563 hasConcept C111919701 @default.
- W4319302563 hasConcept C119857082 @default.
- W4319302563 hasConcept C124101348 @default.
- W4319302563 hasConcept C136389625 @default.
- W4319302563 hasConcept C152745839 @default.
- W4319302563 hasConcept C153180895 @default.
- W4319302563 hasConcept C154945302 @default.
- W4319302563 hasConcept C172707124 @default.
- W4319302563 hasConcept C41008148 @default.
- W4319302563 hasConcept C50644808 @default.
- W4319302563 hasConcept C52622490 @default.
- W4319302563 hasConcept C739882 @default.
- W4319302563 hasConcept C8038995 @default.
- W4319302563 hasConcept C98045186 @default.
- W4319302563 hasConceptScore W4319302563C111919701 @default.
- W4319302563 hasConceptScore W4319302563C119857082 @default.
- W4319302563 hasConceptScore W4319302563C124101348 @default.
- W4319302563 hasConceptScore W4319302563C136389625 @default.
- W4319302563 hasConceptScore W4319302563C152745839 @default.
- W4319302563 hasConceptScore W4319302563C153180895 @default.
- W4319302563 hasConceptScore W4319302563C154945302 @default.
- W4319302563 hasConceptScore W4319302563C172707124 @default.
- W4319302563 hasConceptScore W4319302563C41008148 @default.
- W4319302563 hasConceptScore W4319302563C50644808 @default.
- W4319302563 hasConceptScore W4319302563C52622490 @default.
- W4319302563 hasConceptScore W4319302563C739882 @default.
- W4319302563 hasConceptScore W4319302563C8038995 @default.
- W4319302563 hasConceptScore W4319302563C98045186 @default.
- W4319302563 hasFunder F4320321001 @default.
- W4319302563 hasIssue "11" @default.
- W4319302563 hasLocation W43193025631 @default.
- W4319302563 hasOpenAccess W4319302563 @default.
- W4319302563 hasPrimaryLocation W43193025631 @default.
- W4319302563 hasRelatedWork W2592385986 @default.
- W4319302563 hasRelatedWork W3046775127 @default.