Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319302608> ?p ?o ?g. }
- W4319302608 endingPage "11040" @default.
- W4319302608 startingPage "11030" @default.
- W4319302608 abstract "With cloud computing facing higher levels of big data than ever, the processor scale is rapidly expanding. Large clusters place a heavy burden on cloud service providers and the environment. High energy consumption decreases the economic benefits of cloud service providers, while enormous power demands pressure on the environment. The dynamic consolidation of virtual machines (VMs), which uses live migration technology to optimize resource usage and reduce energy consumption, is sufficient for saving energy while ensuring high performance with the desired level of quality of service (QoS) between cloud providers and users. In this paper, we propose a novel machine-learning algorithm called deep-Q neural network VM consolidation (DQNVMC) that combines the Q-leaning approach with deep learning neural network to find an approximately optimal solution. Furthermore, based on the real workload trace in the cloud environment, the experiments show that DQNVMC effectively reduces energy consumption while meeting the high performance of QoS requirements." @default.
- W4319302608 created "2023-02-07" @default.
- W4319302608 creator A5004487040 @default.
- W4319302608 creator A5017378558 @default.
- W4319302608 creator A5044884625 @default.
- W4319302608 creator A5069771802 @default.
- W4319302608 creator A5074012388 @default.
- W4319302608 date "2023-11-01" @default.
- W4319302608 modified "2023-10-15" @default.
- W4319302608 title "Energy and Performance-Efficient Dynamic Consolidate VMs Using Deep-Q Neural Network" @default.
- W4319302608 cites W2100297710 @default.
- W4319302608 cites W2110374615 @default.
- W4319302608 cites W2145339207 @default.
- W4319302608 cites W2551000267 @default.
- W4319302608 cites W2610707080 @default.
- W4319302608 cites W2616454488 @default.
- W4319302608 cites W2782748722 @default.
- W4319302608 cites W2782876185 @default.
- W4319302608 cites W2783087373 @default.
- W4319302608 cites W2803970949 @default.
- W4319302608 cites W2810079886 @default.
- W4319302608 cites W2886582699 @default.
- W4319302608 cites W2891076394 @default.
- W4319302608 cites W2903874029 @default.
- W4319302608 cites W2970765482 @default.
- W4319302608 cites W2973261831 @default.
- W4319302608 cites W2981604716 @default.
- W4319302608 cites W3008643628 @default.
- W4319302608 cites W3019178292 @default.
- W4319302608 cites W3033881824 @default.
- W4319302608 cites W3042905487 @default.
- W4319302608 cites W3044011738 @default.
- W4319302608 cites W3095109479 @default.
- W4319302608 cites W3125767776 @default.
- W4319302608 cites W3127147870 @default.
- W4319302608 cites W3134115400 @default.
- W4319302608 cites W3138269143 @default.
- W4319302608 cites W3156894764 @default.
- W4319302608 cites W3184980526 @default.
- W4319302608 cites W4200059648 @default.
- W4319302608 cites W4210737419 @default.
- W4319302608 cites W4210902003 @default.
- W4319302608 cites W4220969192 @default.
- W4319302608 cites W4224862998 @default.
- W4319302608 doi "https://doi.org/10.1109/tii.2023.3242769" @default.
- W4319302608 hasPublicationYear "2023" @default.
- W4319302608 type Work @default.
- W4319302608 citedByCount "1" @default.
- W4319302608 crossrefType "journal-article" @default.
- W4319302608 hasAuthorship W4319302608A5004487040 @default.
- W4319302608 hasAuthorship W4319302608A5017378558 @default.
- W4319302608 hasAuthorship W4319302608A5044884625 @default.
- W4319302608 hasAuthorship W4319302608A5069771802 @default.
- W4319302608 hasAuthorship W4319302608A5074012388 @default.
- W4319302608 hasConcept C111919701 @default.
- W4319302608 hasConcept C116537 @default.
- W4319302608 hasConcept C119599485 @default.
- W4319302608 hasConcept C120314980 @default.
- W4319302608 hasConcept C127413603 @default.
- W4319302608 hasConcept C136264566 @default.
- W4319302608 hasConcept C154945302 @default.
- W4319302608 hasConcept C162324750 @default.
- W4319302608 hasConcept C25344961 @default.
- W4319302608 hasConcept C2778160497 @default.
- W4319302608 hasConcept C2778476105 @default.
- W4319302608 hasConcept C2780165032 @default.
- W4319302608 hasConcept C2780378061 @default.
- W4319302608 hasConcept C31258907 @default.
- W4319302608 hasConcept C41008148 @default.
- W4319302608 hasConcept C50644808 @default.
- W4319302608 hasConcept C5119721 @default.
- W4319302608 hasConcept C79403827 @default.
- W4319302608 hasConcept C79974875 @default.
- W4319302608 hasConceptScore W4319302608C111919701 @default.
- W4319302608 hasConceptScore W4319302608C116537 @default.
- W4319302608 hasConceptScore W4319302608C119599485 @default.
- W4319302608 hasConceptScore W4319302608C120314980 @default.
- W4319302608 hasConceptScore W4319302608C127413603 @default.
- W4319302608 hasConceptScore W4319302608C136264566 @default.
- W4319302608 hasConceptScore W4319302608C154945302 @default.
- W4319302608 hasConceptScore W4319302608C162324750 @default.
- W4319302608 hasConceptScore W4319302608C25344961 @default.
- W4319302608 hasConceptScore W4319302608C2778160497 @default.
- W4319302608 hasConceptScore W4319302608C2778476105 @default.
- W4319302608 hasConceptScore W4319302608C2780165032 @default.
- W4319302608 hasConceptScore W4319302608C2780378061 @default.
- W4319302608 hasConceptScore W4319302608C31258907 @default.
- W4319302608 hasConceptScore W4319302608C41008148 @default.
- W4319302608 hasConceptScore W4319302608C50644808 @default.
- W4319302608 hasConceptScore W4319302608C5119721 @default.
- W4319302608 hasConceptScore W4319302608C79403827 @default.
- W4319302608 hasConceptScore W4319302608C79974875 @default.
- W4319302608 hasFunder F4320321001 @default.
- W4319302608 hasIssue "11" @default.
- W4319302608 hasLocation W43193026081 @default.
- W4319302608 hasOpenAccess W4319302608 @default.
- W4319302608 hasPrimaryLocation W43193026081 @default.
- W4319302608 hasRelatedWork W2049319146 @default.