Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319304552> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4319304552 abstract "<p> </p> <h3>Objectives</h3> <p>Automated algorithms to identify individuals with type 1 diabetes using electronic health records (EHR) are increasingly used in biomedical research. It is not known whether the accuracy of these algorithms differs by self-reported race. We investigated whether polygenic scores improve identification of individuals with type 1 diabetes.</p> <h3>Research Design and Methods</h3> <p>We investigated two large hospital-based biobanks (Mass General Brigham [MGB] and Bio<em>Me</em>) and identified individuals with type 1 diabetes using an established automated algorithm. We performed chart reviews to validate the diagnosis of type 1 diabetes. We implemented two published polygenic scores for type 1 diabetes (developed in individuals of European or African ancestry). We assessed the classification algorithm before and after incorporating polygenic scores.</p> <h3>Results</h3> <p>The automated algorithm was more likely to incorrectly assign a diagnosis of type 1 diabetes for self-reported non-White individuals compared to self-reported White individuals (odds ratio = 3.45 [95% confidence interval 1.54-7.69], <em>P</em>=0.0026). After incorporating polygenic scores in MGB Biobank, the positive predictive value of the type 1 diabetes algorithm increased from 70% to 97% for self-reported White individuals (meaning that 97% of those predicted to have type 1 diabetes indeed had type 1 diabetes), and from 53% to 100% for self-reported non-White individuals. Similar results were found in Bio<em>Me</em>.</p> <h3>Conclusions</h3> <p>Automated phenotyping algorithms may exacerbate health disparities due to an increased risk of misclassification of individuals from underrepresented populations. Polygenic scores may be used to improve the performance of phenotyping algorithms and potentially reduce this disparity. </p>" @default.
- W4319304552 created "2023-02-07" @default.
- W4319304552 creator A5006245950 @default.
- W4319304552 creator A5013371954 @default.
- W4319304552 creator A5026923595 @default.
- W4319304552 creator A5035384706 @default.
- W4319304552 creator A5036685109 @default.
- W4319304552 creator A5047478353 @default.
- W4319304552 creator A5062262355 @default.
- W4319304552 creator A5083013456 @default.
- W4319304552 date "2023-02-06" @default.
- W4319304552 modified "2023-10-17" @default.
- W4319304552 title "Polygenic Scores Help Reduce Racial Disparities in Predictive Accuracy of Automated Type 1 Diabetes Classification Algorithms" @default.
- W4319304552 doi "https://doi.org/10.2337/figshare.21893889.v1" @default.
- W4319304552 hasPublicationYear "2023" @default.
- W4319304552 type Work @default.
- W4319304552 citedByCount "0" @default.
- W4319304552 crossrefType "posted-content" @default.
- W4319304552 hasAuthorship W4319304552A5006245950 @default.
- W4319304552 hasAuthorship W4319304552A5013371954 @default.
- W4319304552 hasAuthorship W4319304552A5026923595 @default.
- W4319304552 hasAuthorship W4319304552A5035384706 @default.
- W4319304552 hasAuthorship W4319304552A5036685109 @default.
- W4319304552 hasAuthorship W4319304552A5047478353 @default.
- W4319304552 hasAuthorship W4319304552A5062262355 @default.
- W4319304552 hasAuthorship W4319304552A5083013456 @default.
- W4319304552 hasBestOaLocation W43193045521 @default.
- W4319304552 hasConcept C11413529 @default.
- W4319304552 hasConcept C116567970 @default.
- W4319304552 hasConcept C126322002 @default.
- W4319304552 hasConcept C134018914 @default.
- W4319304552 hasConcept C156957248 @default.
- W4319304552 hasConcept C2777180221 @default.
- W4319304552 hasConcept C33923547 @default.
- W4319304552 hasConcept C44249647 @default.
- W4319304552 hasConcept C555293320 @default.
- W4319304552 hasConcept C60644358 @default.
- W4319304552 hasConcept C71924100 @default.
- W4319304552 hasConcept C86803240 @default.
- W4319304552 hasConceptScore W4319304552C11413529 @default.
- W4319304552 hasConceptScore W4319304552C116567970 @default.
- W4319304552 hasConceptScore W4319304552C126322002 @default.
- W4319304552 hasConceptScore W4319304552C134018914 @default.
- W4319304552 hasConceptScore W4319304552C156957248 @default.
- W4319304552 hasConceptScore W4319304552C2777180221 @default.
- W4319304552 hasConceptScore W4319304552C33923547 @default.
- W4319304552 hasConceptScore W4319304552C44249647 @default.
- W4319304552 hasConceptScore W4319304552C555293320 @default.
- W4319304552 hasConceptScore W4319304552C60644358 @default.
- W4319304552 hasConceptScore W4319304552C71924100 @default.
- W4319304552 hasConceptScore W4319304552C86803240 @default.
- W4319304552 hasLocation W43193045521 @default.
- W4319304552 hasLocation W43193045522 @default.
- W4319304552 hasOpenAccess W4319304552 @default.
- W4319304552 hasPrimaryLocation W43193045521 @default.
- W4319304552 hasRelatedWork W2089565228 @default.
- W4319304552 hasRelatedWork W2099280290 @default.
- W4319304552 hasRelatedWork W2145982906 @default.
- W4319304552 hasRelatedWork W2326617092 @default.
- W4319304552 hasRelatedWork W2417067822 @default.
- W4319304552 hasRelatedWork W2556019128 @default.
- W4319304552 hasRelatedWork W2928596562 @default.
- W4319304552 hasRelatedWork W2969090826 @default.
- W4319304552 hasRelatedWork W4230537662 @default.
- W4319304552 hasRelatedWork W4283447683 @default.
- W4319304552 isParatext "false" @default.
- W4319304552 isRetracted "false" @default.
- W4319304552 workType "article" @default.