Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319316173> ?p ?o ?g. }
- W4319316173 endingPage "106" @default.
- W4319316173 startingPage "89" @default.
- W4319316173 abstract "Social media are the influential Internet community for general netizens to disseminate information, views, and opinions extensively. Recently, the research on Sentiment analysis has intensified due to the vast amount of data obtained from these numerous social networking platforms. During this COVID-19 pandemic, one of the great social networking sites viz. Twitter has experienced a significant increase in online posts and reviews concerning COVID-19 related tweets. In the view of Twitter, the spread of news concerning coronavirus variants has impacted many aspects of the public by providing messages around different issues and opinions to its potential users. In this study, we have used Twitter as a source of data for searching the index keywords and hashtag versions for the terms like “Pandemic”, “Coronavirus”, “COVID-19”, “SARS-CoV-2”, and “Omicron”, and we have examined the psychological and emotional impact it had on the public. This paper provides analytical information about people’s perceptions of coronavirus (tweets were collected from March 2020 to December 2021). With those tweets, sentiment analysis was performed using the TextBlob text processing python module to acquire the people’s subjective data (opinions and feelings) polarity concerning the effects of coronavirus. Furthermore, for effective text classification, we have applied classification methodologies like Support Vector Machine (SVM), K Nearest Neighbor (KNN), Logistic Regression (LR), and Decision Tree (DT). The SVM concerning feature extraction produced the results with 99.49% accuracy. This study assists the government organizations in attaining COVID-19 insights by implying public mental health sentiments in social networks." @default.
- W4319316173 created "2023-02-08" @default.
- W4319316173 creator A5013638777 @default.
- W4319316173 creator A5060183971 @default.
- W4319316173 creator A5062641145 @default.
- W4319316173 date "2023-01-01" @default.
- W4319316173 modified "2023-09-27" @default.
- W4319316173 title "Sentiment Analysis of COVID-19 Tweets Using TextBlob and Machine Learning Classifiers" @default.
- W4319316173 cites W143803448 @default.
- W4319316173 cites W2006724638 @default.
- W4319316173 cites W2095655043 @default.
- W4319316173 cites W2125283600 @default.
- W4319316173 cites W2163803148 @default.
- W4319316173 cites W2170505850 @default.
- W4319316173 cites W2342603028 @default.
- W4319316173 cites W2593572939 @default.
- W4319316173 cites W2596622777 @default.
- W4319316173 cites W2806345781 @default.
- W4319316173 cites W2810426219 @default.
- W4319316173 cites W2886444838 @default.
- W4319316173 cites W2886965186 @default.
- W4319316173 cites W2892090722 @default.
- W4319316173 cites W2936331919 @default.
- W4319316173 cites W2964295521 @default.
- W4319316173 cites W3021667312 @default.
- W4319316173 cites W3047012519 @default.
- W4319316173 cites W3047440100 @default.
- W4319316173 cites W3082149889 @default.
- W4319316173 cites W3091497614 @default.
- W4319316173 cites W3093291461 @default.
- W4319316173 cites W3099413269 @default.
- W4319316173 cites W3120409033 @default.
- W4319316173 cites W3125087699 @default.
- W4319316173 cites W3134051805 @default.
- W4319316173 cites W3193668308 @default.
- W4319316173 doi "https://doi.org/10.1007/978-981-19-6634-7_8" @default.
- W4319316173 hasPublicationYear "2023" @default.
- W4319316173 type Work @default.
- W4319316173 citedByCount "1" @default.
- W4319316173 countsByYear W43193161732023 @default.
- W4319316173 crossrefType "book-chapter" @default.
- W4319316173 hasAuthorship W4319316173A5013638777 @default.
- W4319316173 hasAuthorship W4319316173A5060183971 @default.
- W4319316173 hasAuthorship W4319316173A5062641145 @default.
- W4319316173 hasConcept C108827166 @default.
- W4319316173 hasConcept C110875604 @default.
- W4319316173 hasConcept C119857082 @default.
- W4319316173 hasConcept C12267149 @default.
- W4319316173 hasConcept C134698397 @default.
- W4319316173 hasConcept C136764020 @default.
- W4319316173 hasConcept C138885662 @default.
- W4319316173 hasConcept C142724271 @default.
- W4319316173 hasConcept C154945302 @default.
- W4319316173 hasConcept C17744445 @default.
- W4319316173 hasConcept C199539241 @default.
- W4319316173 hasConcept C2778137410 @default.
- W4319316173 hasConcept C2779134260 @default.
- W4319316173 hasConcept C3008058167 @default.
- W4319316173 hasConcept C41008148 @default.
- W4319316173 hasConcept C41895202 @default.
- W4319316173 hasConcept C518677369 @default.
- W4319316173 hasConcept C524204448 @default.
- W4319316173 hasConcept C66402592 @default.
- W4319316173 hasConcept C71924100 @default.
- W4319316173 hasConcept C84525736 @default.
- W4319316173 hasConcept C94625758 @default.
- W4319316173 hasConceptScore W4319316173C108827166 @default.
- W4319316173 hasConceptScore W4319316173C110875604 @default.
- W4319316173 hasConceptScore W4319316173C119857082 @default.
- W4319316173 hasConceptScore W4319316173C12267149 @default.
- W4319316173 hasConceptScore W4319316173C134698397 @default.
- W4319316173 hasConceptScore W4319316173C136764020 @default.
- W4319316173 hasConceptScore W4319316173C138885662 @default.
- W4319316173 hasConceptScore W4319316173C142724271 @default.
- W4319316173 hasConceptScore W4319316173C154945302 @default.
- W4319316173 hasConceptScore W4319316173C17744445 @default.
- W4319316173 hasConceptScore W4319316173C199539241 @default.
- W4319316173 hasConceptScore W4319316173C2778137410 @default.
- W4319316173 hasConceptScore W4319316173C2779134260 @default.
- W4319316173 hasConceptScore W4319316173C3008058167 @default.
- W4319316173 hasConceptScore W4319316173C41008148 @default.
- W4319316173 hasConceptScore W4319316173C41895202 @default.
- W4319316173 hasConceptScore W4319316173C518677369 @default.
- W4319316173 hasConceptScore W4319316173C524204448 @default.
- W4319316173 hasConceptScore W4319316173C66402592 @default.
- W4319316173 hasConceptScore W4319316173C71924100 @default.
- W4319316173 hasConceptScore W4319316173C84525736 @default.
- W4319316173 hasConceptScore W4319316173C94625758 @default.
- W4319316173 hasLocation W43193161731 @default.
- W4319316173 hasOpenAccess W4319316173 @default.
- W4319316173 hasPrimaryLocation W43193161731 @default.
- W4319316173 hasRelatedWork W2748952813 @default.
- W4319316173 hasRelatedWork W2937631562 @default.
- W4319316173 hasRelatedWork W3127425528 @default.
- W4319316173 hasRelatedWork W3153584103 @default.
- W4319316173 hasRelatedWork W3194539120 @default.
- W4319316173 hasRelatedWork W3210918776 @default.
- W4319316173 hasRelatedWork W4224946860 @default.