Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319318244> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4319318244 endingPage "297" @default.
- W4319318244 startingPage "297" @default.
- W4319318244 abstract "How to learn the embedding vectors of nodes in unsupervised large-scale heterogeneous networks is a key problem in heterogeneous network embedding research. This paper proposes an unsupervised embedding learning model, named LHGI (Large-scale Heterogeneous Graph Infomax). LHGI adopts the subgraph sampling technology under the guidance of metapaths, which can compress the network and retain the semantic information in the network as much as possible. At the same time, LHGI adopts the idea of contrastive learning, and takes the mutual information between normal/negative node vectors and the global graph vector as the objective function to guide the learning process. By maximizing the mutual information, LHGI solves the problem of how to train the network without supervised information. The experimental results show that, compared with the baseline models, the LHGI model shows a better feature extraction capability both in medium-scale unsupervised heterogeneous networks and in large-scale unsupervised heterogeneous networks. The node vectors generated by the LHGI model achieve better performance in the downstream mining tasks." @default.
- W4319318244 created "2023-02-08" @default.
- W4319318244 creator A5001877853 @default.
- W4319318244 creator A5026131859 @default.
- W4319318244 creator A5036244591 @default.
- W4319318244 date "2023-02-04" @default.
- W4319318244 modified "2023-10-14" @default.
- W4319318244 title "Unsupervised Embedding Learning for Large-Scale Heterogeneous Networks Based on Metapath Graph Sampling" @default.
- W4319318244 cites W2393319904 @default.
- W4319318244 cites W2511871973 @default.
- W4319318244 cites W2743104969 @default.
- W4319318244 cites W2767774008 @default.
- W4319318244 cites W2952343887 @default.
- W4319318244 cites W2962756421 @default.
- W4319318244 cites W2963707260 @default.
- W4319318244 cites W2964051675 @default.
- W4319318244 cites W2996522488 @default.
- W4319318244 cites W3012871709 @default.
- W4319318244 cites W3040313359 @default.
- W4319318244 cites W3042085764 @default.
- W4319318244 cites W3104097132 @default.
- W4319318244 cites W3104355095 @default.
- W4319318244 cites W3114303065 @default.
- W4319318244 cites W3139266014 @default.
- W4319318244 cites W3175412885 @default.
- W4319318244 cites W3185161717 @default.
- W4319318244 cites W3205650396 @default.
- W4319318244 cites W3216568231 @default.
- W4319318244 doi "https://doi.org/10.3390/e25020297" @default.
- W4319318244 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36832662" @default.
- W4319318244 hasPublicationYear "2023" @default.
- W4319318244 type Work @default.
- W4319318244 citedByCount "0" @default.
- W4319318244 crossrefType "journal-article" @default.
- W4319318244 hasAuthorship W4319318244A5001877853 @default.
- W4319318244 hasAuthorship W4319318244A5026131859 @default.
- W4319318244 hasAuthorship W4319318244A5036244591 @default.
- W4319318244 hasBestOaLocation W43193182441 @default.
- W4319318244 hasConcept C119857082 @default.
- W4319318244 hasConcept C120317606 @default.
- W4319318244 hasConcept C124101348 @default.
- W4319318244 hasConcept C127162648 @default.
- W4319318244 hasConcept C127413603 @default.
- W4319318244 hasConcept C132525143 @default.
- W4319318244 hasConcept C152139883 @default.
- W4319318244 hasConcept C153402090 @default.
- W4319318244 hasConcept C154945302 @default.
- W4319318244 hasConcept C31258907 @default.
- W4319318244 hasConcept C41008148 @default.
- W4319318244 hasConcept C41608201 @default.
- W4319318244 hasConcept C62611344 @default.
- W4319318244 hasConcept C66938386 @default.
- W4319318244 hasConcept C73555534 @default.
- W4319318244 hasConcept C8038995 @default.
- W4319318244 hasConcept C80444323 @default.
- W4319318244 hasConceptScore W4319318244C119857082 @default.
- W4319318244 hasConceptScore W4319318244C120317606 @default.
- W4319318244 hasConceptScore W4319318244C124101348 @default.
- W4319318244 hasConceptScore W4319318244C127162648 @default.
- W4319318244 hasConceptScore W4319318244C127413603 @default.
- W4319318244 hasConceptScore W4319318244C132525143 @default.
- W4319318244 hasConceptScore W4319318244C152139883 @default.
- W4319318244 hasConceptScore W4319318244C153402090 @default.
- W4319318244 hasConceptScore W4319318244C154945302 @default.
- W4319318244 hasConceptScore W4319318244C31258907 @default.
- W4319318244 hasConceptScore W4319318244C41008148 @default.
- W4319318244 hasConceptScore W4319318244C41608201 @default.
- W4319318244 hasConceptScore W4319318244C62611344 @default.
- W4319318244 hasConceptScore W4319318244C66938386 @default.
- W4319318244 hasConceptScore W4319318244C73555534 @default.
- W4319318244 hasConceptScore W4319318244C8038995 @default.
- W4319318244 hasConceptScore W4319318244C80444323 @default.
- W4319318244 hasFunder F4320321001 @default.
- W4319318244 hasIssue "2" @default.
- W4319318244 hasLocation W43193182441 @default.
- W4319318244 hasLocation W43193182442 @default.
- W4319318244 hasLocation W43193182443 @default.
- W4319318244 hasOpenAccess W4319318244 @default.
- W4319318244 hasPrimaryLocation W43193182441 @default.
- W4319318244 hasRelatedWork W2887997457 @default.
- W4319318244 hasRelatedWork W2951873722 @default.
- W4319318244 hasRelatedWork W2963146253 @default.
- W4319318244 hasRelatedWork W3046775127 @default.
- W4319318244 hasRelatedWork W3123344745 @default.
- W4319318244 hasRelatedWork W3196155444 @default.
- W4319318244 hasRelatedWork W3209574120 @default.
- W4319318244 hasRelatedWork W4285260836 @default.
- W4319318244 hasRelatedWork W4321460685 @default.
- W4319318244 hasRelatedWork W4386462264 @default.
- W4319318244 hasVolume "25" @default.
- W4319318244 isParatext "false" @default.
- W4319318244 isRetracted "false" @default.
- W4319318244 workType "article" @default.