Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319337691> ?p ?o ?g. }
- W4319337691 endingPage "106640" @default.
- W4319337691 startingPage "106640" @default.
- W4319337691 abstract "Deciphering information hidden in the gene expression assays for identifying disease subtypes has significant importance in precision medicine. However, computational limitations thwart this process due to the intricacy of the biological networks and the curse of dimensionality of gene expression data. Therefore, clustering in such scenarios often becomes the first choice of exploratory data analysis to identify natural structures and intrinsic patterns in the data. However, sparse and high dimensional nature of omics data prevents conventional clustering algorithms to discover subtypes that are clinically relevant and statistically significant. Hence, non-linear dimensionality reduction techniques coupled with clustering in such scenarios often becomes imperative to improve the clustering results. In this study, we present a robust pipeline to discover disease subtypes with clinical relevance. Specifically, we focus on discovering patient sub-groups that have a residual life patterns remarkably different from other sub-groups. This is significant because by refining prognosis, subtyping can reduce uncertainty in approximating patients expected outcome. The methodology present is based on robust correlation estimation, UMAP- a non-linear dimensionality reduction method and mapper- a tool from topology. Notably, we suggest a method for improving the robustness of the correlation matrix of gene expression data for improving the clustering results. The performance of the model is evaluated by applying to five cancer datasets obtained through TCGA and comparisons are performed with some state of the art methods of NEMO, RSC-OTRI and SNF with regard to log-rank test and Restricted Life Expectancy Difference. For example in GBM dataset, the minimum separation for any two discovered subtypes is 221 days which is significantly higher than the other methodologies. We also compared the results without using the robust correlation based estimate and observed that robust correlation improves separability between survival curves significantly. From the results we infer that our methodology performs better compared to other methodologies with regard to separating survival curves of patient sub-groups despite using single omics profiles of patients compared to multiple omics profiles of SNF and NEMO. Pathway over-representation analysis is performed on the final clustering results to investigate the biological underpinnings characterizing each subtype." @default.
- W4319337691 created "2023-02-08" @default.
- W4319337691 creator A5087180513 @default.
- W4319337691 date "2023-03-01" @default.
- W4319337691 modified "2023-10-03" @default.
- W4319337691 title "Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping" @default.
- W4319337691 cites W1480376833 @default.
- W4319337691 cites W1548779692 @default.
- W4319337691 cites W1577822803 @default.
- W4319337691 cites W1801655979 @default.
- W4319337691 cites W1827931243 @default.
- W4319337691 cites W1839682376 @default.
- W4319337691 cites W1845409317 @default.
- W4319337691 cites W1934094702 @default.
- W4319337691 cites W1971465952 @default.
- W4319337691 cites W1986129954 @default.
- W4319337691 cites W1987219048 @default.
- W4319337691 cites W1989638282 @default.
- W4319337691 cites W1989757660 @default.
- W4319337691 cites W2002233209 @default.
- W4319337691 cites W2056780622 @default.
- W4319337691 cites W2066113694 @default.
- W4319337691 cites W2069065842 @default.
- W4319337691 cites W2071949631 @default.
- W4319337691 cites W2072013249 @default.
- W4319337691 cites W2091560152 @default.
- W4319337691 cites W2097255042 @default.
- W4319337691 cites W2117692326 @default.
- W4319337691 cites W2129420347 @default.
- W4319337691 cites W2136787567 @default.
- W4319337691 cites W2139967559 @default.
- W4319337691 cites W2154187696 @default.
- W4319337691 cites W2310034942 @default.
- W4319337691 cites W2560478782 @default.
- W4319337691 cites W2561631604 @default.
- W4319337691 cites W2588848085 @default.
- W4319337691 cites W2614935527 @default.
- W4319337691 cites W2739330662 @default.
- W4319337691 cites W2763420753 @default.
- W4319337691 cites W2789380090 @default.
- W4319337691 cites W2805627121 @default.
- W4319337691 cites W2887040813 @default.
- W4319337691 cites W2887054120 @default.
- W4319337691 cites W2902652978 @default.
- W4319337691 cites W2910249797 @default.
- W4319337691 cites W2916020270 @default.
- W4319337691 cites W2921066798 @default.
- W4319337691 cites W2950878899 @default.
- W4319337691 cites W2951091426 @default.
- W4319337691 cites W2972184354 @default.
- W4319337691 cites W2972689486 @default.
- W4319337691 cites W2980870427 @default.
- W4319337691 cites W3012143780 @default.
- W4319337691 cites W3018049863 @default.
- W4319337691 cites W3033054589 @default.
- W4319337691 cites W3097914258 @default.
- W4319337691 cites W3099609308 @default.
- W4319337691 cites W3100619448 @default.
- W4319337691 cites W3113405673 @default.
- W4319337691 cites W3117882517 @default.
- W4319337691 cites W3119554079 @default.
- W4319337691 cites W3173261186 @default.
- W4319337691 cites W3202868818 @default.
- W4319337691 cites W4213157778 @default.
- W4319337691 cites W4283574370 @default.
- W4319337691 cites W4307178415 @default.
- W4319337691 doi "https://doi.org/10.1016/j.compbiomed.2023.106640" @default.
- W4319337691 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36774889" @default.
- W4319337691 hasPublicationYear "2023" @default.
- W4319337691 type Work @default.
- W4319337691 citedByCount "1" @default.
- W4319337691 countsByYear W43193376912023 @default.
- W4319337691 crossrefType "journal-article" @default.
- W4319337691 hasAuthorship W4319337691A5087180513 @default.
- W4319337691 hasConcept C104317684 @default.
- W4319337691 hasConcept C111030470 @default.
- W4319337691 hasConcept C117220453 @default.
- W4319337691 hasConcept C119857082 @default.
- W4319337691 hasConcept C124101348 @default.
- W4319337691 hasConcept C148483581 @default.
- W4319337691 hasConcept C154945302 @default.
- W4319337691 hasConcept C184509293 @default.
- W4319337691 hasConcept C199360897 @default.
- W4319337691 hasConcept C2524010 @default.
- W4319337691 hasConcept C33923547 @default.
- W4319337691 hasConcept C41008148 @default.
- W4319337691 hasConcept C55493867 @default.
- W4319337691 hasConcept C63479239 @default.
- W4319337691 hasConcept C70518039 @default.
- W4319337691 hasConcept C73555534 @default.
- W4319337691 hasConcept C83852419 @default.
- W4319337691 hasConcept C86803240 @default.
- W4319337691 hasConceptScore W4319337691C104317684 @default.
- W4319337691 hasConceptScore W4319337691C111030470 @default.
- W4319337691 hasConceptScore W4319337691C117220453 @default.
- W4319337691 hasConceptScore W4319337691C119857082 @default.
- W4319337691 hasConceptScore W4319337691C124101348 @default.
- W4319337691 hasConceptScore W4319337691C148483581 @default.