Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319341010> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4319341010 endingPage "172" @default.
- W4319341010 startingPage "147" @default.
- W4319341010 abstract "Majority of researches are taking place in the image-processing dimension as the demand for image processing applications is widely increasing. Generative adversarial network is a state-of-the-art image-processing technology in recent improvement and development in the field of image processing. Generative adversarial network is a neural network architecture which is used as a generative model. Generative adversarial network is popularly known as GANs. GANs can be designed for generating scores of images from the data sets, text to image conversion, face aging, animations, storytelling and so on. GANs can also be used in the field of signal communication to attain optimization in combinational design. Based upon their design and applications, a number of variants of GANs have come into existence. The various classes of GANs include semantic enhancement GANs, resolution enhancement GANs, diversity enhancement GANs and motion enhancement GANs. Popular examples of GANS are deep convolution generative adversarial network (DCGAN), conditional generative adversarial network (cGAN), stack GAN, (discover cross-domain relations with generative adversarial networks (Disco GAN), InfoGAN Age-cGAN and so on. Basically, any GAN framework works on the adversarial principle of evaluating generative models. Models named generator and discriminator will be trained simultaneously. The role of generator is to synthesize a series of outputs and the role of discriminator is to differentiate the currently generated output from the previous outputs. This generation and discrimination process iterates until the discriminator declares the current output to be 100% different from the previous outputs. This chapter thoroughly introduces GANs and their latest trends for performing image processing and computer vision." @default.
- W4319341010 created "2023-02-08" @default.
- W4319341010 creator A5017639844 @default.
- W4319341010 creator A5041939328 @default.
- W4319341010 date "2023-02-06" @default.
- W4319341010 modified "2023-10-18" @default.
- W4319341010 title "9 Generative adversary networks novel trends in image processing" @default.
- W4319341010 doi "https://doi.org/10.1515/9783110756722-009" @default.
- W4319341010 hasPublicationYear "2023" @default.
- W4319341010 type Work @default.
- W4319341010 citedByCount "0" @default.
- W4319341010 crossrefType "book-chapter" @default.
- W4319341010 hasAuthorship W4319341010A5017639844 @default.
- W4319341010 hasAuthorship W4319341010A5041939328 @default.
- W4319341010 hasConcept C11413529 @default.
- W4319341010 hasConcept C115961682 @default.
- W4319341010 hasConcept C121332964 @default.
- W4319341010 hasConcept C153180895 @default.
- W4319341010 hasConcept C154945302 @default.
- W4319341010 hasConcept C163258240 @default.
- W4319341010 hasConcept C202444582 @default.
- W4319341010 hasConcept C2779803651 @default.
- W4319341010 hasConcept C2780992000 @default.
- W4319341010 hasConcept C2988773926 @default.
- W4319341010 hasConcept C33923547 @default.
- W4319341010 hasConcept C37736160 @default.
- W4319341010 hasConcept C39890363 @default.
- W4319341010 hasConcept C41008148 @default.
- W4319341010 hasConcept C62520636 @default.
- W4319341010 hasConcept C76155785 @default.
- W4319341010 hasConcept C80444323 @default.
- W4319341010 hasConcept C9417928 @default.
- W4319341010 hasConcept C94915269 @default.
- W4319341010 hasConcept C9652623 @default.
- W4319341010 hasConceptScore W4319341010C11413529 @default.
- W4319341010 hasConceptScore W4319341010C115961682 @default.
- W4319341010 hasConceptScore W4319341010C121332964 @default.
- W4319341010 hasConceptScore W4319341010C153180895 @default.
- W4319341010 hasConceptScore W4319341010C154945302 @default.
- W4319341010 hasConceptScore W4319341010C163258240 @default.
- W4319341010 hasConceptScore W4319341010C202444582 @default.
- W4319341010 hasConceptScore W4319341010C2779803651 @default.
- W4319341010 hasConceptScore W4319341010C2780992000 @default.
- W4319341010 hasConceptScore W4319341010C2988773926 @default.
- W4319341010 hasConceptScore W4319341010C33923547 @default.
- W4319341010 hasConceptScore W4319341010C37736160 @default.
- W4319341010 hasConceptScore W4319341010C39890363 @default.
- W4319341010 hasConceptScore W4319341010C41008148 @default.
- W4319341010 hasConceptScore W4319341010C62520636 @default.
- W4319341010 hasConceptScore W4319341010C76155785 @default.
- W4319341010 hasConceptScore W4319341010C80444323 @default.
- W4319341010 hasConceptScore W4319341010C9417928 @default.
- W4319341010 hasConceptScore W4319341010C94915269 @default.
- W4319341010 hasConceptScore W4319341010C9652623 @default.
- W4319341010 hasLocation W43193410101 @default.
- W4319341010 hasOpenAccess W4319341010 @default.
- W4319341010 hasPrimaryLocation W43193410101 @default.
- W4319341010 hasRelatedWork W2914998939 @default.
- W4319341010 hasRelatedWork W2936485314 @default.
- W4319341010 hasRelatedWork W2952936466 @default.
- W4319341010 hasRelatedWork W2984809863 @default.
- W4319341010 hasRelatedWork W3003183197 @default.
- W4319341010 hasRelatedWork W3005996785 @default.
- W4319341010 hasRelatedWork W3180903229 @default.
- W4319341010 hasRelatedWork W4280544492 @default.
- W4319341010 hasRelatedWork W4288624664 @default.
- W4319341010 hasRelatedWork W4328029048 @default.
- W4319341010 isParatext "false" @default.
- W4319341010 isRetracted "false" @default.
- W4319341010 workType "book-chapter" @default.