Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319341708> ?p ?o ?g. }
- W4319341708 endingPage "6198" @default.
- W4319341708 startingPage "6185" @default.
- W4319341708 abstract "Grouping vehicles into platoons is a promising cooperative driving scenario to enhance the traffic safety and capacity of future vehicular networks. However, fast changing channel conditions in multi-platoon vehicular networks cause tremendous uncertainty for resource allocation. In addition, the unprecedented proliferation of various emerging vehicle-to-infrastructure (V2I) applications may result in some service demands with conflicting quality of experience. In this paper, we formulate a multi-objective resource allocation problem, which maximizes the transmission success ratio of intra-platoon communications and the mean opinion score (MOS) of V2I communication links. To efficiently solve this multi-objective optimization problem, we resort to a deep reinforcement learning (DRL) framework. Specifically, we divide it into a set of scalar optimization subproblems based on the weighted sum approach and model each one as a partially observable stochastic game (P-OSG), where each platoon acts as an agent and the actions taken by all platoons correspond to the resource allocation solution. We further propose a contribution-based dual-clip proximal policy optimization (CD-PPO) algorithm to deal with each subproblem, which is a DRL algorithm based on the actor-critic framework. The network parameters of all subproblems are then optimized collaboratively by using the proposed training algorithm and the neighborhood parameter transfer strategy. The desired Pareto front is obtained when all subproblems are solved. Simulation results reveal that the proposed algorithm can outperform other algorithms in terms of the MOS and transmission success ratio." @default.
- W4319341708 created "2023-02-08" @default.
- W4319341708 creator A5000861569 @default.
- W4319341708 creator A5010707849 @default.
- W4319341708 creator A5014462544 @default.
- W4319341708 creator A5051665415 @default.
- W4319341708 date "2023-09-01" @default.
- W4319341708 modified "2023-10-16" @default.
- W4319341708 title "Deep Reinforcement Learning for Multi-Objective Resource Allocation in Multi-Platoon Cooperative Vehicular Networks" @default.
- W4319341708 cites W1639877187 @default.
- W4319341708 cites W1641379095 @default.
- W4319341708 cites W2023018477 @default.
- W4319341708 cites W2029444866 @default.
- W4319341708 cites W2032490187 @default.
- W4319341708 cites W2069500867 @default.
- W4319341708 cites W2099618002 @default.
- W4319341708 cites W2133747588 @default.
- W4319341708 cites W2219431285 @default.
- W4319341708 cites W2343099284 @default.
- W4319341708 cites W2398676906 @default.
- W4319341708 cites W2510173137 @default.
- W4319341708 cites W2514619461 @default.
- W4319341708 cites W2520659666 @default.
- W4319341708 cites W2546571074 @default.
- W4319341708 cites W2581667525 @default.
- W4319341708 cites W2735764544 @default.
- W4319341708 cites W2741931273 @default.
- W4319341708 cites W2756144809 @default.
- W4319341708 cites W2772664513 @default.
- W4319341708 cites W2799944166 @default.
- W4319341708 cites W2801057479 @default.
- W4319341708 cites W2802897269 @default.
- W4319341708 cites W2896161835 @default.
- W4319341708 cites W2897141719 @default.
- W4319341708 cites W2904750032 @default.
- W4319341708 cites W2948175577 @default.
- W4319341708 cites W2955399186 @default.
- W4319341708 cites W2962846391 @default.
- W4319341708 cites W2963000651 @default.
- W4319341708 cites W2967152818 @default.
- W4319341708 cites W2968764495 @default.
- W4319341708 cites W2996896271 @default.
- W4319341708 cites W3099070819 @default.
- W4319341708 cites W3099769178 @default.
- W4319341708 cites W3102812201 @default.
- W4319341708 cites W3104593624 @default.
- W4319341708 cites W3156894764 @default.
- W4319341708 cites W3197106007 @default.
- W4319341708 cites W4283651311 @default.
- W4319341708 doi "https://doi.org/10.1109/twc.2023.3240425" @default.
- W4319341708 hasPublicationYear "2023" @default.
- W4319341708 type Work @default.
- W4319341708 citedByCount "0" @default.
- W4319341708 crossrefType "journal-article" @default.
- W4319341708 hasAuthorship W4319341708A5000861569 @default.
- W4319341708 hasAuthorship W4319341708A5010707849 @default.
- W4319341708 hasAuthorship W4319341708A5014462544 @default.
- W4319341708 hasAuthorship W4319341708A5051665415 @default.
- W4319341708 hasConcept C11413529 @default.
- W4319341708 hasConcept C120314980 @default.
- W4319341708 hasConcept C126255220 @default.
- W4319341708 hasConcept C137836250 @default.
- W4319341708 hasConcept C154945302 @default.
- W4319341708 hasConcept C192448918 @default.
- W4319341708 hasConcept C2775924081 @default.
- W4319341708 hasConcept C2777735972 @default.
- W4319341708 hasConcept C2780609101 @default.
- W4319341708 hasConcept C29202148 @default.
- W4319341708 hasConcept C31258907 @default.
- W4319341708 hasConcept C33923547 @default.
- W4319341708 hasConcept C41008148 @default.
- W4319341708 hasConcept C5119721 @default.
- W4319341708 hasConcept C555944384 @default.
- W4319341708 hasConcept C76155785 @default.
- W4319341708 hasConcept C94523657 @default.
- W4319341708 hasConcept C97541855 @default.
- W4319341708 hasConceptScore W4319341708C11413529 @default.
- W4319341708 hasConceptScore W4319341708C120314980 @default.
- W4319341708 hasConceptScore W4319341708C126255220 @default.
- W4319341708 hasConceptScore W4319341708C137836250 @default.
- W4319341708 hasConceptScore W4319341708C154945302 @default.
- W4319341708 hasConceptScore W4319341708C192448918 @default.
- W4319341708 hasConceptScore W4319341708C2775924081 @default.
- W4319341708 hasConceptScore W4319341708C2777735972 @default.
- W4319341708 hasConceptScore W4319341708C2780609101 @default.
- W4319341708 hasConceptScore W4319341708C29202148 @default.
- W4319341708 hasConceptScore W4319341708C31258907 @default.
- W4319341708 hasConceptScore W4319341708C33923547 @default.
- W4319341708 hasConceptScore W4319341708C41008148 @default.
- W4319341708 hasConceptScore W4319341708C5119721 @default.
- W4319341708 hasConceptScore W4319341708C555944384 @default.
- W4319341708 hasConceptScore W4319341708C76155785 @default.
- W4319341708 hasConceptScore W4319341708C94523657 @default.
- W4319341708 hasConceptScore W4319341708C97541855 @default.
- W4319341708 hasFunder F4320321001 @default.
- W4319341708 hasFunder F4320322769 @default.
- W4319341708 hasIssue "9" @default.
- W4319341708 hasLocation W43193417081 @default.