Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319431330> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4319431330 abstract "Heart disease is a dangerous condition that can lead to a fatal condition due to cardiac arrest. Recent studies have revealed various facts for analyzing cardiac data by sensing, monitoring, and learning data in IoT to predict early diagnosis and treatment. Through machine learning based feature analysis, accurate disease detection has been implemented. However, the dominant methods do not accurately predict the result since the incorrect features contain non-related support values to select the features to perform training validation and produce prediction inaccuracy. To overcome this limitation, a Machine Learning and Transfer Learning Model (TLM) is proposed to perform heart disease prediction. Initially, pre-processing has been carried out to reduce dimension, and the scaling factor was also used to calculate the margin rate. To increasing the prediction accuracy Disease Prone Impact Rate (DPIR) intends to find the support values. To select the labeled features, Relative Feature Margin Selection (RFMS) is used to select and train the model by Multilayer perception neural network (MLPNN). This classifier selects the margin weights to predict the heart disease risk level based on the class. This predicts higher impact of cardiac deficiency rate by attaining the relevant features based deep feature data learning model, which produce higher precision rate to increase the prediction accuracy than other methods." @default.
- W4319431330 created "2023-02-09" @default.
- W4319431330 creator A5016821272 @default.
- W4319431330 creator A5022298725 @default.
- W4319431330 creator A5028587434 @default.
- W4319431330 creator A5037182322 @default.
- W4319431330 creator A5063638160 @default.
- W4319431330 creator A5078939262 @default.
- W4319431330 date "2022-12-13" @default.
- W4319431330 modified "2023-09-28" @default.
- W4319431330 title "Heart Disease Prediction and Classification using Machine Learning and Transfer Learning Model" @default.
- W4319431330 cites W2024504947 @default.
- W4319431330 cites W2786088554 @default.
- W4319431330 cites W2947173902 @default.
- W4319431330 cites W2949767632 @default.
- W4319431330 cites W3014253013 @default.
- W4319431330 cites W3034233514 @default.
- W4319431330 cites W3035142875 @default.
- W4319431330 cites W3037322243 @default.
- W4319431330 cites W3039358234 @default.
- W4319431330 cites W3040351441 @default.
- W4319431330 cites W3044482460 @default.
- W4319431330 cites W3088428904 @default.
- W4319431330 cites W3134776043 @default.
- W4319431330 cites W3195070922 @default.
- W4319431330 cites W4221021152 @default.
- W4319431330 cites W4226173998 @default.
- W4319431330 cites W2768696038 @default.
- W4319431330 doi "https://doi.org/10.1109/icacrs55517.2022.10029279" @default.
- W4319431330 hasPublicationYear "2022" @default.
- W4319431330 type Work @default.
- W4319431330 citedByCount "0" @default.
- W4319431330 crossrefType "proceedings-article" @default.
- W4319431330 hasAuthorship W4319431330A5016821272 @default.
- W4319431330 hasAuthorship W4319431330A5022298725 @default.
- W4319431330 hasAuthorship W4319431330A5028587434 @default.
- W4319431330 hasAuthorship W4319431330A5037182322 @default.
- W4319431330 hasAuthorship W4319431330A5063638160 @default.
- W4319431330 hasAuthorship W4319431330A5078939262 @default.
- W4319431330 hasConcept C119857082 @default.
- W4319431330 hasConcept C12267149 @default.
- W4319431330 hasConcept C138885662 @default.
- W4319431330 hasConcept C148483581 @default.
- W4319431330 hasConcept C150899416 @default.
- W4319431330 hasConcept C153180895 @default.
- W4319431330 hasConcept C154945302 @default.
- W4319431330 hasConcept C2776401178 @default.
- W4319431330 hasConcept C41008148 @default.
- W4319431330 hasConcept C41895202 @default.
- W4319431330 hasConcept C50644808 @default.
- W4319431330 hasConcept C774472 @default.
- W4319431330 hasConcept C95623464 @default.
- W4319431330 hasConceptScore W4319431330C119857082 @default.
- W4319431330 hasConceptScore W4319431330C12267149 @default.
- W4319431330 hasConceptScore W4319431330C138885662 @default.
- W4319431330 hasConceptScore W4319431330C148483581 @default.
- W4319431330 hasConceptScore W4319431330C150899416 @default.
- W4319431330 hasConceptScore W4319431330C153180895 @default.
- W4319431330 hasConceptScore W4319431330C154945302 @default.
- W4319431330 hasConceptScore W4319431330C2776401178 @default.
- W4319431330 hasConceptScore W4319431330C41008148 @default.
- W4319431330 hasConceptScore W4319431330C41895202 @default.
- W4319431330 hasConceptScore W4319431330C50644808 @default.
- W4319431330 hasConceptScore W4319431330C774472 @default.
- W4319431330 hasConceptScore W4319431330C95623464 @default.
- W4319431330 hasLocation W43194313301 @default.
- W4319431330 hasOpenAccess W4319431330 @default.
- W4319431330 hasPrimaryLocation W43194313301 @default.
- W4319431330 hasRelatedWork W2013708872 @default.
- W4319431330 hasRelatedWork W2041636156 @default.
- W4319431330 hasRelatedWork W2160451891 @default.
- W4319431330 hasRelatedWork W2779605423 @default.
- W4319431330 hasRelatedWork W2945281038 @default.
- W4319431330 hasRelatedWork W3036085849 @default.
- W4319431330 hasRelatedWork W3105251098 @default.
- W4319431330 hasRelatedWork W3200179079 @default.
- W4319431330 hasRelatedWork W4242764575 @default.
- W4319431330 hasRelatedWork W2345184372 @default.
- W4319431330 isParatext "false" @default.
- W4319431330 isRetracted "false" @default.
- W4319431330 workType "article" @default.