Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319431350> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4319431350 abstract "In the routine operation of a smart grid (SG), accurate short-term load forecasting (STLF) is paramount. To predict short-term load more effectively, this paper proposes an integrated evolutionary deep learning strategy based on navel feature engineering (FE), long short-term memory (LSTM) network, and Genetic algorithm (GA). First, FE eradicates repetitious and irrelevant attributes to guarantee high computational efficiency. The GA is then used to optimize the parameters (ReLU, MAPE, RMSprop batch size, Number of neurons, and Epoch) of LSTM. The optimized LSTM is used to get the actual STLF results. Furthermore, most literature studies focus on accuracy improvement. At the same time, the importance and productivity of the devised model are confined equally by its convergence rate. Historical load data from the independent system operator (ISO) New England (ISO-NE) energy sector is analyzed to validate the developed hybrid model. The MAPE of the proposed model has a small error value of 0.6710 and the shortest processing time of 159 seconds. The devised model outperforms benchmark models such as the LSTM, LSTM-PSO, LSTM-NSGA-II, and LSTM-GA in aspects of convergence rate and accuracy. In other words, the LSTM errors are effectively decreased by the GA hyperparameter optimization. These results may be helpful as a procedure to shorten the time-consuming process of hyperparameter setting." @default.
- W4319431350 created "2023-02-09" @default.
- W4319431350 creator A5020213187 @default.
- W4319431350 creator A5055305087 @default.
- W4319431350 date "2022-12-04" @default.
- W4319431350 modified "2023-09-26" @default.
- W4319431350 title "Short-Term Load Forecasting using Long Short Term Memory Optimized by Genetic Algorithm" @default.
- W4319431350 cites W2021252908 @default.
- W4319431350 cites W2028788479 @default.
- W4319431350 cites W2064675550 @default.
- W4319431350 cites W2097571405 @default.
- W4319431350 cites W2484938157 @default.
- W4319431350 cites W2591025119 @default.
- W4319431350 cites W2591426394 @default.
- W4319431350 cites W2808625514 @default.
- W4319431350 cites W2890778288 @default.
- W4319431350 cites W2902087482 @default.
- W4319431350 cites W3119683607 @default.
- W4319431350 cites W3137581398 @default.
- W4319431350 cites W4285821766 @default.
- W4319431350 doi "https://doi.org/10.1109/ispec54162.2022.10033074" @default.
- W4319431350 hasPublicationYear "2022" @default.
- W4319431350 type Work @default.
- W4319431350 citedByCount "0" @default.
- W4319431350 crossrefType "proceedings-article" @default.
- W4319431350 hasAuthorship W4319431350A5020213187 @default.
- W4319431350 hasAuthorship W4319431350A5055305087 @default.
- W4319431350 hasConcept C10485038 @default.
- W4319431350 hasConcept C11413529 @default.
- W4319431350 hasConcept C119857082 @default.
- W4319431350 hasConcept C121332964 @default.
- W4319431350 hasConcept C12267149 @default.
- W4319431350 hasConcept C13280743 @default.
- W4319431350 hasConcept C150217764 @default.
- W4319431350 hasConcept C154945302 @default.
- W4319431350 hasConcept C162324750 @default.
- W4319431350 hasConcept C185798385 @default.
- W4319431350 hasConcept C205649164 @default.
- W4319431350 hasConcept C26517878 @default.
- W4319431350 hasConcept C2777303404 @default.
- W4319431350 hasConcept C38652104 @default.
- W4319431350 hasConcept C41008148 @default.
- W4319431350 hasConcept C50522688 @default.
- W4319431350 hasConcept C50644808 @default.
- W4319431350 hasConcept C57869625 @default.
- W4319431350 hasConcept C61797465 @default.
- W4319431350 hasConcept C62520636 @default.
- W4319431350 hasConcept C8642999 @default.
- W4319431350 hasConcept C8880873 @default.
- W4319431350 hasConceptScore W4319431350C10485038 @default.
- W4319431350 hasConceptScore W4319431350C11413529 @default.
- W4319431350 hasConceptScore W4319431350C119857082 @default.
- W4319431350 hasConceptScore W4319431350C121332964 @default.
- W4319431350 hasConceptScore W4319431350C12267149 @default.
- W4319431350 hasConceptScore W4319431350C13280743 @default.
- W4319431350 hasConceptScore W4319431350C150217764 @default.
- W4319431350 hasConceptScore W4319431350C154945302 @default.
- W4319431350 hasConceptScore W4319431350C162324750 @default.
- W4319431350 hasConceptScore W4319431350C185798385 @default.
- W4319431350 hasConceptScore W4319431350C205649164 @default.
- W4319431350 hasConceptScore W4319431350C26517878 @default.
- W4319431350 hasConceptScore W4319431350C2777303404 @default.
- W4319431350 hasConceptScore W4319431350C38652104 @default.
- W4319431350 hasConceptScore W4319431350C41008148 @default.
- W4319431350 hasConceptScore W4319431350C50522688 @default.
- W4319431350 hasConceptScore W4319431350C50644808 @default.
- W4319431350 hasConceptScore W4319431350C57869625 @default.
- W4319431350 hasConceptScore W4319431350C61797465 @default.
- W4319431350 hasConceptScore W4319431350C62520636 @default.
- W4319431350 hasConceptScore W4319431350C8642999 @default.
- W4319431350 hasConceptScore W4319431350C8880873 @default.
- W4319431350 hasLocation W43194313501 @default.
- W4319431350 hasOpenAccess W4319431350 @default.
- W4319431350 hasPrimaryLocation W43194313501 @default.
- W4319431350 hasRelatedWork W3081580854 @default.
- W4319431350 hasRelatedWork W3152685838 @default.
- W4319431350 hasRelatedWork W4205222687 @default.
- W4319431350 hasRelatedWork W4280535922 @default.
- W4319431350 hasRelatedWork W4283697347 @default.
- W4319431350 hasRelatedWork W4287683259 @default.
- W4319431350 hasRelatedWork W4295309597 @default.
- W4319431350 hasRelatedWork W4298144215 @default.
- W4319431350 hasRelatedWork W4313854490 @default.
- W4319431350 hasRelatedWork W4323894855 @default.
- W4319431350 isParatext "false" @default.
- W4319431350 isRetracted "false" @default.
- W4319431350 workType "article" @default.