Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319438783> ?p ?o ?g. }
- W4319438783 endingPage "e14852" @default.
- W4319438783 startingPage "e14852" @default.
- W4319438783 abstract "Optimal control simulations of musculoskeletal models can be used to reconstruct motions measured with optical motion capture to estimate joint and muscle kinematics and kinetics. These simulations are mutually and dynamically consistent, in contrast to traditional inverse methods. Commonly, optimal control simulations are generated by tracking generalized coordinates in combination with ground reaction forces. The generalized coordinates are estimated from marker positions using, for example, inverse kinematics. Hence, inaccuracies in the estimated coordinates are tracked in the simulation. We developed an approach to reconstruct arbitrary motions, such as change of direction motions, using optimal control simulations of 3D full-body musculoskeletal models by directly tracking marker and ground reaction force data. For evaluation, we recorded three trials each of straight running, curved running, and a v-cut for 10 participants. We reconstructed the recordings with marker tracking simulations, coordinate tracking simulations, and inverse kinematics and dynamics. First, we analyzed the convergence of the simulations and found that the wall time increased three to four times when using marker tracking compared to coordinate tracking. Then, we compared the marker trajectories, ground reaction forces, pelvis translations, joint angles, and joint moments between the three reconstruction methods. Root mean squared deviations between measured and estimated marker positions were smallest for inverse kinematics ( e.g ., 7.6 ± 5.1 mm for v-cut). However, measurement noise and soft tissue artifacts are likely also tracked in inverse kinematics, meaning that this approach does not reflect a gold standard. Marker tracking simulations resulted in slightly higher root mean squared marker deviations ( e.g ., 9.5 ± 6.2 mm for v-cut) than inverse kinematics. In contrast, coordinate tracking resulted in deviations that were nearly twice as high ( e.g ., 16.8 ± 10.5 mm for v-cut). Joint angles from coordinate tracking followed the estimated joint angles from inverse kinematics more closely than marker tracking ( e.g ., root mean squared deviation of 1.4 ± 1.8 deg vs . 3.5 ± 4.0 deg for v-cut). However, we did not have a gold standard measurement of the joint angles, so it is unknown if this larger deviation means the solution is less accurate. In conclusion, we showed that optimal control simulations of change of direction running motions can be created by tracking marker and ground reaction force data. Marker tracking considerably improved marker accuracy compared to coordinate tracking. Therefore, we recommend reconstructing movements by directly tracking marker data in the optimal control simulation when precise marker tracking is required." @default.
- W4319438783 created "2023-02-09" @default.
- W4319438783 creator A5000400696 @default.
- W4319438783 creator A5024571000 @default.
- W4319438783 creator A5035699291 @default.
- W4319438783 creator A5044444537 @default.
- W4319438783 creator A5079602007 @default.
- W4319438783 date "2023-02-07" @default.
- W4319438783 modified "2023-09-30" @default.
- W4319438783 title "Change the direction: 3D optimal control simulation by directly tracking marker and ground reaction force data" @default.
- W4319438783 cites W1481402612 @default.
- W4319438783 cites W1973299365 @default.
- W4319438783 cites W1979826626 @default.
- W4319438783 cites W2027176182 @default.
- W4319438783 cites W2055923910 @default.
- W4319438783 cites W2063013011 @default.
- W4319438783 cites W2101465908 @default.
- W4319438783 cites W2112058484 @default.
- W4319438783 cites W2123871098 @default.
- W4319438783 cites W2129242603 @default.
- W4319438783 cites W2130527887 @default.
- W4319438783 cites W2131144747 @default.
- W4319438783 cites W2152045363 @default.
- W4319438783 cites W2152716350 @default.
- W4319438783 cites W2163900161 @default.
- W4319438783 cites W2307717697 @default.
- W4319438783 cites W2472529354 @default.
- W4319438783 cites W2742318322 @default.
- W4319438783 cites W2754564722 @default.
- W4319438783 cites W2782434139 @default.
- W4319438783 cites W2800388814 @default.
- W4319438783 cites W2802002915 @default.
- W4319438783 cites W2884696611 @default.
- W4319438783 cites W2892623435 @default.
- W4319438783 cites W2902518883 @default.
- W4319438783 cites W2937655741 @default.
- W4319438783 cites W2959902468 @default.
- W4319438783 cites W2982374787 @default.
- W4319438783 cites W2991319537 @default.
- W4319438783 cites W3045778318 @default.
- W4319438783 cites W3093433246 @default.
- W4319438783 cites W3117262374 @default.
- W4319438783 cites W3133378119 @default.
- W4319438783 cites W3135856171 @default.
- W4319438783 cites W4281693806 @default.
- W4319438783 cites W4285197527 @default.
- W4319438783 doi "https://doi.org/10.7717/peerj.14852" @default.
- W4319438783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36778146" @default.
- W4319438783 hasPublicationYear "2023" @default.
- W4319438783 type Work @default.
- W4319438783 citedByCount "2" @default.
- W4319438783 countsByYear W43194387832023 @default.
- W4319438783 crossrefType "journal-article" @default.
- W4319438783 hasAuthorship W4319438783A5000400696 @default.
- W4319438783 hasAuthorship W4319438783A5024571000 @default.
- W4319438783 hasAuthorship W4319438783A5035699291 @default.
- W4319438783 hasAuthorship W4319438783A5044444537 @default.
- W4319438783 hasAuthorship W4319438783A5079602007 @default.
- W4319438783 hasBestOaLocation W43194387831 @default.
- W4319438783 hasConcept C104114177 @default.
- W4319438783 hasConcept C121332964 @default.
- W4319438783 hasConcept C15744967 @default.
- W4319438783 hasConcept C17816587 @default.
- W4319438783 hasConcept C187523126 @default.
- W4319438783 hasConcept C19417346 @default.
- W4319438783 hasConcept C207467116 @default.
- W4319438783 hasConcept C2524010 @default.
- W4319438783 hasConcept C2775936607 @default.
- W4319438783 hasConcept C31972630 @default.
- W4319438783 hasConcept C33923547 @default.
- W4319438783 hasConcept C39920418 @default.
- W4319438783 hasConcept C41008148 @default.
- W4319438783 hasConcept C48007421 @default.
- W4319438783 hasConcept C74650414 @default.
- W4319438783 hasConcept C96332660 @default.
- W4319438783 hasConceptScore W4319438783C104114177 @default.
- W4319438783 hasConceptScore W4319438783C121332964 @default.
- W4319438783 hasConceptScore W4319438783C15744967 @default.
- W4319438783 hasConceptScore W4319438783C17816587 @default.
- W4319438783 hasConceptScore W4319438783C187523126 @default.
- W4319438783 hasConceptScore W4319438783C19417346 @default.
- W4319438783 hasConceptScore W4319438783C207467116 @default.
- W4319438783 hasConceptScore W4319438783C2524010 @default.
- W4319438783 hasConceptScore W4319438783C2775936607 @default.
- W4319438783 hasConceptScore W4319438783C31972630 @default.
- W4319438783 hasConceptScore W4319438783C33923547 @default.
- W4319438783 hasConceptScore W4319438783C39920418 @default.
- W4319438783 hasConceptScore W4319438783C41008148 @default.
- W4319438783 hasConceptScore W4319438783C48007421 @default.
- W4319438783 hasConceptScore W4319438783C74650414 @default.
- W4319438783 hasConceptScore W4319438783C96332660 @default.
- W4319438783 hasFunder F4320320873 @default.
- W4319438783 hasFunder F4320320879 @default.
- W4319438783 hasFunder F4320330033 @default.
- W4319438783 hasLocation W43194387831 @default.
- W4319438783 hasLocation W43194387832 @default.
- W4319438783 hasLocation W43194387833 @default.
- W4319438783 hasLocation W43194387834 @default.