Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319442039> ?p ?o ?g. }
- W4319442039 endingPage "103646" @default.
- W4319442039 startingPage "103646" @default.
- W4319442039 abstract "Contextual information plays an important role in many computer vision tasks, such as object detection, video action detection, image classification, etc. Recognizing a single object or action out of context could be sometimes very challenging, and context information may help improve the understanding of a scene or an event greatly. Appearance context information, e.g., colors or shapes of the background of an object can improve the recognition accuracy of the object in the scene. Semantic context (e.g. a keyboard on an empty desk vs. a keyboard next to a desktop computer ) will improve accuracy and exclude unrelated events. Context information that are not in the image itself, such as the time or location of an images captured, can also help to decide whether certain event or action should occur. Other types of context (e.g. 3D structure of a building) will also provide additional information to improve the accuracy. In this survey, different context information that has been used in computer vision tasks is reviewed. We categorize context into different types and different levels. We also review available machine learning models and image/video datasets that can employ context information. Furthermore, we compare context-based integration and context-free integration in mainly two classes of tasks: image-based and video-based. Finally, this survey is concluded by a set of promising future directions in context learning and utilization." @default.
- W4319442039 created "2023-02-09" @default.
- W4319442039 creator A5017392188 @default.
- W4319442039 creator A5072942184 @default.
- W4319442039 date "2023-03-01" @default.
- W4319442039 modified "2023-09-26" @default.
- W4319442039 title "Context understanding in computer vision: A survey" @default.
- W4319442039 cites W1834627138 @default.
- W4319442039 cites W1892072966 @default.
- W4319442039 cites W1910108985 @default.
- W4319442039 cites W1933349210 @default.
- W4319442039 cites W1934410531 @default.
- W4319442039 cites W1999378860 @default.
- W4319442039 cites W2031489346 @default.
- W4319442039 cites W2040851354 @default.
- W4319442039 cites W2049856457 @default.
- W4319442039 cites W2054279472 @default.
- W4319442039 cites W2066876748 @default.
- W4319442039 cites W2077069816 @default.
- W4319442039 cites W2097117768 @default.
- W4319442039 cites W2106962004 @default.
- W4319442039 cites W2108956488 @default.
- W4319442039 cites W2110764733 @default.
- W4319442039 cites W2116510030 @default.
- W4319442039 cites W2125215748 @default.
- W4319442039 cites W2134787522 @default.
- W4319442039 cites W2145315825 @default.
- W4319442039 cites W2151428784 @default.
- W4319442039 cites W2159318475 @default.
- W4319442039 cites W2166761907 @default.
- W4319442039 cites W2167131693 @default.
- W4319442039 cites W2170325868 @default.
- W4319442039 cites W2194775991 @default.
- W4319442039 cites W2209882149 @default.
- W4319442039 cites W2277195237 @default.
- W4319442039 cites W2340897893 @default.
- W4319442039 cites W2395709053 @default.
- W4319442039 cites W2413367505 @default.
- W4319442039 cites W2530143578 @default.
- W4319442039 cites W2579549467 @default.
- W4319442039 cites W2592109610 @default.
- W4319442039 cites W2598225981 @default.
- W4319442039 cites W2600230189 @default.
- W4319442039 cites W2618799552 @default.
- W4319442039 cites W2740569051 @default.
- W4319442039 cites W2797977484 @default.
- W4319442039 cites W2883386984 @default.
- W4319442039 cites W2883820570 @default.
- W4319442039 cites W2886970679 @default.
- W4319442039 cites W2889811054 @default.
- W4319442039 cites W2931882224 @default.
- W4319442039 cites W2932399282 @default.
- W4319442039 cites W2963184176 @default.
- W4319442039 cites W2963420272 @default.
- W4319442039 cites W2963529931 @default.
- W4319442039 cites W2963536419 @default.
- W4319442039 cites W2963566548 @default.
- W4319442039 cites W2963574614 @default.
- W4319442039 cites W2963938081 @default.
- W4319442039 cites W2964109005 @default.
- W4319442039 cites W2976818183 @default.
- W4319442039 cites W2990520530 @default.
- W4319442039 cites W2998495542 @default.
- W4319442039 cites W3034669389 @default.
- W4319442039 cites W3034955056 @default.
- W4319442039 cites W3035066680 @default.
- W4319442039 cites W3119023914 @default.
- W4319442039 cites W3120199164 @default.
- W4319442039 cites W3146449001 @default.
- W4319442039 cites W3174396556 @default.
- W4319442039 cites W4214591361 @default.
- W4319442039 cites W4214681287 @default.
- W4319442039 doi "https://doi.org/10.1016/j.cviu.2023.103646" @default.
- W4319442039 hasPublicationYear "2023" @default.
- W4319442039 type Work @default.
- W4319442039 citedByCount "2" @default.
- W4319442039 countsByYear W43194420392023 @default.
- W4319442039 crossrefType "journal-article" @default.
- W4319442039 hasAuthorship W4319442039A5017392188 @default.
- W4319442039 hasAuthorship W4319442039A5072942184 @default.
- W4319442039 hasBestOaLocation W43194420392 @default.
- W4319442039 hasConcept C107457646 @default.
- W4319442039 hasConcept C119857082 @default.
- W4319442039 hasConcept C121332964 @default.
- W4319442039 hasConcept C151730666 @default.
- W4319442039 hasConcept C154945302 @default.
- W4319442039 hasConcept C177264268 @default.
- W4319442039 hasConcept C183322885 @default.
- W4319442039 hasConcept C199360897 @default.
- W4319442039 hasConcept C2779343474 @default.
- W4319442039 hasConcept C2779662365 @default.
- W4319442039 hasConcept C2780791683 @default.
- W4319442039 hasConcept C2781238097 @default.
- W4319442039 hasConcept C31972630 @default.
- W4319442039 hasConcept C41008148 @default.
- W4319442039 hasConcept C62520636 @default.
- W4319442039 hasConcept C86803240 @default.
- W4319442039 hasConcept C94124525 @default.