Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319442612> ?p ?o ?g. }
- W4319442612 endingPage "103134" @default.
- W4319442612 startingPage "103134" @default.
- W4319442612 abstract "Malware has been one of the most damaging threats to computers that span across multiple operating systems and various file formats. To defend against ever-increasing and ever-evolving malware, tremendous efforts have been made to propose a variety of malware detection that attempt to effectively and efficiently detect malware so as to mitigate possible damages as early as possible. Recent studies have shown that, on the one hand, existing machine learning (ML) and deep learning (DL) techniques enable superior solutions in detecting newly emerging and previously unseen malware. However, on the other hand, ML and DL models are inherently vulnerable to adversarial attacks in the form of adversarial examples, which are maliciously generated by slightly and carefully perturbing the legitimate inputs to misbehave. Adversarial attacks are initially studied in the domain of computer vision like image classification, and then quickly extended to other domains, including natural language processing, audio recognition, and even malware detection. In this paper, we focus on malware with the file format of portable executable (PE) in the family of Windows operating systems, namely Windows PE malware, as a representative case to study the adversarial attack methods in such adversarial settings. To be specific, we start by first outlining the general learning framework of Windows PE malware detection based on ML/DL and subsequently highlighting three unique challenges of performing adversarial attacks in the context of Windows PE malware. Then, we conduct a comprehensive and systematic review to categorize the state-of-the-art adversarial attacks against PE malware detection, as well as corresponding defenses to increase the robustness of Windows PE malware detection. Finally, we conclude the paper by first presenting other related attacks against Windows PE malware detection beyond the adversarial attacks and then shedding light on future research directions and opportunities." @default.
- W4319442612 created "2023-02-09" @default.
- W4319442612 creator A5002183066 @default.
- W4319442612 creator A5002789209 @default.
- W4319442612 creator A5011825081 @default.
- W4319442612 creator A5018935982 @default.
- W4319442612 creator A5021069086 @default.
- W4319442612 creator A5031482316 @default.
- W4319442612 creator A5046479964 @default.
- W4319442612 creator A5048610055 @default.
- W4319442612 creator A5057867117 @default.
- W4319442612 creator A5058611515 @default.
- W4319442612 creator A5083574013 @default.
- W4319442612 creator A5086942701 @default.
- W4319442612 date "2023-05-01" @default.
- W4319442612 modified "2023-10-05" @default.
- W4319442612 title "Adversarial attacks against Windows PE malware detection: A survey of the state-of-the-art" @default.
- W4319442612 cites W1966831167 @default.
- W4319442612 cites W1981221397 @default.
- W4319442612 cites W2064675550 @default.
- W4319442612 cites W2079215333 @default.
- W4319442612 cites W2112796928 @default.
- W4319442612 cites W2123504579 @default.
- W4319442612 cites W2154053567 @default.
- W4319442612 cites W2164163973 @default.
- W4319442612 cites W2304489333 @default.
- W4319442612 cites W2732916693 @default.
- W4319442612 cites W2900633536 @default.
- W4319442612 cites W2905130735 @default.
- W4319442612 cites W2932977083 @default.
- W4319442612 cites W2942795289 @default.
- W4319442612 cites W2962700793 @default.
- W4319442612 cites W2989473642 @default.
- W4319442612 cites W2994101726 @default.
- W4319442612 cites W3020273542 @default.
- W4319442612 cites W3022269570 @default.
- W4319442612 cites W3035584216 @default.
- W4319442612 cites W3043234150 @default.
- W4319442612 cites W3083694078 @default.
- W4319442612 cites W3087231533 @default.
- W4319442612 cites W3093604544 @default.
- W4319442612 cites W3102543338 @default.
- W4319442612 cites W3164220323 @default.
- W4319442612 cites W3215186461 @default.
- W4319442612 cites W3216686652 @default.
- W4319442612 cites W4225133925 @default.
- W4319442612 cites W4239510810 @default.
- W4319442612 cites W4253440082 @default.
- W4319442612 cites W4280552702 @default.
- W4319442612 cites W4286567539 @default.
- W4319442612 cites W4288072399 @default.
- W4319442612 doi "https://doi.org/10.1016/j.cose.2023.103134" @default.
- W4319442612 hasPublicationYear "2023" @default.
- W4319442612 type Work @default.
- W4319442612 citedByCount "6" @default.
- W4319442612 countsByYear W43194426122023 @default.
- W4319442612 crossrefType "journal-article" @default.
- W4319442612 hasAuthorship W4319442612A5002183066 @default.
- W4319442612 hasAuthorship W4319442612A5002789209 @default.
- W4319442612 hasAuthorship W4319442612A5011825081 @default.
- W4319442612 hasAuthorship W4319442612A5018935982 @default.
- W4319442612 hasAuthorship W4319442612A5021069086 @default.
- W4319442612 hasAuthorship W4319442612A5031482316 @default.
- W4319442612 hasAuthorship W4319442612A5046479964 @default.
- W4319442612 hasAuthorship W4319442612A5048610055 @default.
- W4319442612 hasAuthorship W4319442612A5057867117 @default.
- W4319442612 hasAuthorship W4319442612A5058611515 @default.
- W4319442612 hasAuthorship W4319442612A5083574013 @default.
- W4319442612 hasAuthorship W4319442612A5086942701 @default.
- W4319442612 hasBestOaLocation W43194426122 @default.
- W4319442612 hasConcept C111919701 @default.
- W4319442612 hasConcept C119857082 @default.
- W4319442612 hasConcept C151730666 @default.
- W4319442612 hasConcept C154945302 @default.
- W4319442612 hasConcept C160145156 @default.
- W4319442612 hasConcept C199360897 @default.
- W4319442612 hasConcept C2778403875 @default.
- W4319442612 hasConcept C2779343474 @default.
- W4319442612 hasConcept C37736160 @default.
- W4319442612 hasConcept C38652104 @default.
- W4319442612 hasConcept C41008148 @default.
- W4319442612 hasConcept C48103436 @default.
- W4319442612 hasConcept C541664917 @default.
- W4319442612 hasConcept C84525096 @default.
- W4319442612 hasConcept C86803240 @default.
- W4319442612 hasConcept C94124525 @default.
- W4319442612 hasConceptScore W4319442612C111919701 @default.
- W4319442612 hasConceptScore W4319442612C119857082 @default.
- W4319442612 hasConceptScore W4319442612C151730666 @default.
- W4319442612 hasConceptScore W4319442612C154945302 @default.
- W4319442612 hasConceptScore W4319442612C160145156 @default.
- W4319442612 hasConceptScore W4319442612C199360897 @default.
- W4319442612 hasConceptScore W4319442612C2778403875 @default.
- W4319442612 hasConceptScore W4319442612C2779343474 @default.
- W4319442612 hasConceptScore W4319442612C37736160 @default.
- W4319442612 hasConceptScore W4319442612C38652104 @default.
- W4319442612 hasConceptScore W4319442612C41008148 @default.
- W4319442612 hasConceptScore W4319442612C48103436 @default.