Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319443979> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4319443979 abstract "Purpose A community demonstrates the unique qualities and relationships between its members that distinguish it from other communities within a network. Network analysis relies heavily on community detection. Despite the traditional spectral clustering and statistical inference methods, deep learning techniques for community detection have grown in popularity due to their ease of processing high-dimensional network data. Graph convolutional neural networks (GCNNs) have received much attention recently and have developed into a potential and ubiquitous method for directly detecting communities on graphs. Inspired by the promising results of graph convolutional networks (GCNs) in analyzing graph structure data, a novel community graph convolutional network (CommunityGCN) as a semi-supervised node classification model has been proposed and compared with recent baseline methods graph attention network (GAT), GCN-based technique for unsupervised community detection and Markov random fields combined with graph convolutional network (MRFasGCN). Design/methodology/approach This work presents the method for identifying communities that combines the notion of node classification via message passing with the architecture of a semi-supervised graph neural network. Six benchmark datasets, namely, Cora, CiteSeer, ACM, Karate, IMDB and Facebook, have been used in the experimentation. Findings In the first set of experiments, the scaled normalized average matrix of all neighbor's features including the node itself was obtained, followed by obtaining the weighted average matrix of low-dimensional nodes. In the second set of experiments, the average weighted matrix was forwarded to the GCN with two layers and the activation function for predicting the node class was applied. The results demonstrate that node classification with GCN can improve the performance of identifying communities on graph datasets. Originality/value The experiment reveals that the CommunityGCN approach has given better results with accuracy, normalized mutual information, F 1 and modularity scores of 91.26, 79.9, 92.58 and 70.5 per cent, respectively, for detecting communities in the graph network, which is much greater than the range of 55.7–87.07 per cent reported in previous literature. Thus, it has been concluded that the GCN with node classification models has improved the accuracy." @default.
- W4319443979 created "2023-02-09" @default.
- W4319443979 creator A5007549080 @default.
- W4319443979 creator A5016923140 @default.
- W4319443979 creator A5029037363 @default.
- W4319443979 date "2023-02-06" @default.
- W4319443979 modified "2023-10-01" @default.
- W4319443979 title "CommunityGCN: community detection using node classification with graph convolution network" @default.
- W4319443979 cites W1977556410 @default.
- W4319443979 cites W2100495367 @default.
- W4319443979 cites W2153959628 @default.
- W4319443979 cites W2158787690 @default.
- W4319443979 cites W2407712691 @default.
- W4319443979 cites W2963224980 @default.
- W4319443979 cites W2997223565 @default.
- W4319443979 cites W2998176787 @default.
- W4319443979 cites W3017036350 @default.
- W4319443979 cites W3026423472 @default.
- W4319443979 cites W3027678042 @default.
- W4319443979 cites W3038037918 @default.
- W4319443979 cites W3048203961 @default.
- W4319443979 cites W3086477784 @default.
- W4319443979 cites W3093301018 @default.
- W4319443979 cites W3101413764 @default.
- W4319443979 cites W3131819656 @default.
- W4319443979 cites W3136021864 @default.
- W4319443979 cites W3162357584 @default.
- W4319443979 cites W3184141547 @default.
- W4319443979 cites W3185484565 @default.
- W4319443979 cites W3201451384 @default.
- W4319443979 cites W3213302843 @default.
- W4319443979 cites W3215352074 @default.
- W4319443979 cites W4205485327 @default.
- W4319443979 cites W4214515438 @default.
- W4319443979 cites W4283377296 @default.
- W4319443979 doi "https://doi.org/10.1108/dta-02-2022-0056" @default.
- W4319443979 hasPublicationYear "2023" @default.
- W4319443979 type Work @default.
- W4319443979 citedByCount "0" @default.
- W4319443979 crossrefType "journal-article" @default.
- W4319443979 hasAuthorship W4319443979A5007549080 @default.
- W4319443979 hasAuthorship W4319443979A5016923140 @default.
- W4319443979 hasAuthorship W4319443979A5029037363 @default.
- W4319443979 hasConcept C124101348 @default.
- W4319443979 hasConcept C127413603 @default.
- W4319443979 hasConcept C132525143 @default.
- W4319443979 hasConcept C153180895 @default.
- W4319443979 hasConcept C154945302 @default.
- W4319443979 hasConcept C180356752 @default.
- W4319443979 hasConcept C22047676 @default.
- W4319443979 hasConcept C2776214188 @default.
- W4319443979 hasConcept C41008148 @default.
- W4319443979 hasConcept C62611344 @default.
- W4319443979 hasConcept C66938386 @default.
- W4319443979 hasConcept C73555534 @default.
- W4319443979 hasConcept C80444323 @default.
- W4319443979 hasConcept C81363708 @default.
- W4319443979 hasConceptScore W4319443979C124101348 @default.
- W4319443979 hasConceptScore W4319443979C127413603 @default.
- W4319443979 hasConceptScore W4319443979C132525143 @default.
- W4319443979 hasConceptScore W4319443979C153180895 @default.
- W4319443979 hasConceptScore W4319443979C154945302 @default.
- W4319443979 hasConceptScore W4319443979C180356752 @default.
- W4319443979 hasConceptScore W4319443979C22047676 @default.
- W4319443979 hasConceptScore W4319443979C2776214188 @default.
- W4319443979 hasConceptScore W4319443979C41008148 @default.
- W4319443979 hasConceptScore W4319443979C62611344 @default.
- W4319443979 hasConceptScore W4319443979C66938386 @default.
- W4319443979 hasConceptScore W4319443979C73555534 @default.
- W4319443979 hasConceptScore W4319443979C80444323 @default.
- W4319443979 hasConceptScore W4319443979C81363708 @default.
- W4319443979 hasLocation W43194439791 @default.
- W4319443979 hasOpenAccess W4319443979 @default.
- W4319443979 hasPrimaryLocation W43194439791 @default.
- W4319443979 hasRelatedWork W2175746458 @default.
- W4319443979 hasRelatedWork W2406522397 @default.
- W4319443979 hasRelatedWork W2613736958 @default.
- W4319443979 hasRelatedWork W2732542196 @default.
- W4319443979 hasRelatedWork W2738221750 @default.
- W4319443979 hasRelatedWork W2760085659 @default.
- W4319443979 hasRelatedWork W2912288872 @default.
- W4319443979 hasRelatedWork W2912529491 @default.
- W4319443979 hasRelatedWork W3012978760 @default.
- W4319443979 hasRelatedWork W3093612317 @default.
- W4319443979 isParatext "false" @default.
- W4319443979 isRetracted "false" @default.
- W4319443979 workType "article" @default.